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A B S T R A C T

We present a dynamic model with distributed parameters for the thermoelastic transfer behavior in multilayer
structures, which are motivated by optically addressed deformable mirrors (OADMs). These are encountered in
adaptive optics and utilized for correcting wavefront disturbances of high-power radiation. Our modeling ap-
proach is based on a continuum-mechanic multilayer model which distinguishes between an addressing heat
load – the control input – and a boundary disturbance evoked by the high-power primary radiation. Thus, the
model without control action can be used for passive mirrors as well. The relevant transient effects are in-
vestigated with physically motivated assumptions, the plate-like geometry, and parametric rheological analogue
models. Furthermore, an efficient simulation scheme is established using Fourier methods in conjunction with
model order reduction. The model’s accuracy and the validity of all assumptions is demonstrated by means of an
experimental setup. The parametric model is a first step towards feedback and feedforward control designs and
disturbance compensation algorithms for OADMs.

1. Introduction

Deformable mirrors are used in adaptive optical in order to com-
pensate for various optical disturbances. Initially, adaptive optics de-
vices were introduced in the discipline of astronomy and aim at cor-
recting wavefront distortions caused by astronomical scintillations or
mechanical vibrations [1]. Thus, the image resolution of terrestrial
telescopes can be significantly improved [2–4]. These comparably large
mirrors (D≥ 1m) are typically deformed by an array of voice coil ac-
tuators. More recently, the framework of adaptive optics is also used in
ultraviolet lithography [5–7] or within high-power lasers [8–10]. In
these applications the deformable mirrors have diameters up to a
maximum of 50mm. Hence, mechanical actuation principles cannot be
realized with satisfactory spatial resolutions [6] and many degrees of
freedoms at the same time, giving rise for optically addressed deform-
able mirrors (OADMs). The considered mirrors consist of three different
layers: A filter glass with a high-reflective coating at the primary wa-
velength λδ, an acrylic glue intermediate layer, and a brass support. The
latter one is actively cooled and acts as a heat sink. The coating at the
top is transmissive at the second wavelength λu, which is addressed to
the mirror from the top as sketched in Fig. 1. Since the secondary

radiation is strongly absorbed, the addressing radiation u(r, φ, t) is used
as a volumetric heat load inside the OADM’s filter glass substrate and
triggers thermoelastic deformations y(r, φ, t). However, a small fraction
of the primary light is also absorbed in the coating of the mirror. At
intensities of multiple kW/cm2, the resulting heat flux is not neglectable
and will evoke additional undesired deformations. In the context of
high-power lasers, the heating of all involved optical elements is a well-
known problem [11–13]. From this point of view, the incoming in-
tensity δ(r, φ, t) has to be considered as a disturbance on the OADM.

A model with distributed parameters is introduced in this paper to
represent the thermomechanical transfer behavior of the OADM which
is subject to significant spatial dynamics. We consider a control loop
which is typical for an adaptive optics setup (see Fig. 1). The control
objective is to regulate the deformation of the OADM’s surface y(r, φ, t)
(and thus the heat transfer) in the presence of the disturbance δ(r, φ, t)
with the input u(r, φ, t) being the distribution of the addressed in-
tensity. To achieve virtually arbitrary input profiles, a spatial light
modulator (SLM) is used. In this work, we focus on the parametric
modeling and a real-time capable, efficient simulation algorithm of the
relevant spatio-temporal transfer behavior.

If it is desired to apply the framework of automatic control to
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spatially distributed systems, the tradeoff between a precise model and
the ability of real-time simulations is crucial [13–15]. In Section 2, we
derive a constitutive material model in a three dimensional (3D) con-
text within a continuum-mechanic framework [16–18]. The plate-like
geometry of the filter glass is repeatedly exploited throughout the
paper [19]. In Section 3, further physically motivated assumptions are
imposed to the nonlinear partial differential equations (PDEs) in order
to carry out the relevant transient effects. Thus, all constants which
occur in the simplified model are parameterized by fundamental ma-
terial constants like Young’s modulus, the thickness of the individual
layers or the specific heat capacity. The efficient simulation algorithm
makes use of the system’s structure and the chosen coordinate system.
Fourier methods and a high resolution spatial discretization as pre-
sented in [20] are combined with model order reduction (MOR) tech-
niques in order to balance the competing objectives ‘spatial resolution’
and ‘real-time capability’ [21–23]. This work extends the litera-
ture [7,24–27] in the following aspects:

• A parametric model based on fundamental continuum-mechanic
balances is established and simplified by reasonable geometrical and
physical assumptions.

• The introduced model considers two kinds of inputs: high primary
light intensities δ(r, φ, t) which cause perturbing deformations as
well as an addressing intensity u(r, φ, t) generating desired de-
formations.

The benefit of a consistent and parametric modeling approach is
that the impact of certain geometric or material parameters can be
evaluated explicitly. Additionally, it possible to use the resulting model
for investigating design issues, such as finding an optimum thickness of
the individual layers. With an explicit representation of two input types
u and δ, model-based compensation schemes can be addressed properly.
Moreover, the model is not limited to active mirrors: With a vanishing
control action u≡ 0 the behavior of passive mirrors or similar optical
devices under thermal load δ can be analyzed. On the other hand, issues
like the processing of the reflected wavefront or details on the ad-
dressing unit’s design are out of this contribution’s scope. These issues
have been rigorously discussed in the literature and can be combined
with the presented model in a straightforward way [2,4]. Finally, we
validate the introduced model by means of experiments reported in
Section 4 and sum up the paper in Section 5 also sketching further
research.

2. Material models for plate-like multilayers

In this section we derive the model equations for thermoelastic heat
conductors consisting of multiple layers. The material model is in-
troduced in Section 2.1 comprising a set of coupled PDEs which govern
displacement ∈u x t( , ) 3 and absolute temperature ∈ +xθ t( , ) in the
solid material body. Afterwards, the general material law is applied to
the plate-like top layer by distinguishing between in-plate and normal
directions. Since the considered mechanical subsystem is linear, it is
valid to discuss rheological concepts in the normal directions for the
lower layers separately in order to determine the contact stresses in
Section 2.2. Finally, the overall model is introduced by incorporating
boundary conditions, controls, disturbances and measured outputs
motivated by the setup in Fig. 1.

2.1. Constitutive in-plate material law

In the following, we derive a material model for thermoelastic heat
conductors in a three-dimensional (3D) context. Note, that a summary
of all formula symbols and adopted conventions is provided
in Appendix A. After introducing the balance theorems, we discuss the
constitutive equations which capture the standard Hookian law in the
context of infinitesimal deformations as well as nonlinear effects arising

from finite thermal loads. We derive the temperature-deformation re-
lations as a set of coupled PDEs by evaluating the balance theorems by
means of the constitutive assumptions. Furthermore, the dissipation
inequality is utilized to prove that the model equations are physically
meaningful.

Balance theorems. The balance equations of a thermomechanical
process comprise thermodynamic and mechanical states: Firstly, the
Kelvin-temperature θ, enthalpy density η, heat flux q and Helmholtz
enthalpy density ψ characterize the thermodynamics [28]. Secondly,
the mechanical states density ρ, symmetric stress tensor = ⊺σ σ , volume
loads g and displacement u with respect to a reference position are
considered. As a strain measure, the linearized Green–Lagrangian strain
tensor

= ∇ + ∇⊺ɛ u u u( ) 1
2

( )3 3 (1)

is used [16]. The notation ∇3 indicates the 3D gradient operator. Be-
sides the balance of mass and moment of momentum,which are sa-
tisfied a priori in this context [28], the local balances for

= ∇ +u σ gρ ρmomentum: ¨ · ,3 (2)

= − ∇ +σ ɛ qρe ρsenergy: ˙ · ˙ · ,3 (3)

≤ − − − ∇−σ ɛ qρηθ ρψ θ θdissipation: 0 · ˙ ˙ ˙ ·1
3 (4)

are taken into account [17] with s and e being a volumetric heat source
and the energy density. The above relations are under-determined but
valid for any thermodynamical process independent of particular ma-
terial properties. While the momentum and energy balances are used to
derive the governing PDEs, the thermodynamic consistency can be
checked by means of the dissipation inequality: It can be evaluated if
the material model represents a physically meaningful behavior [28].
Consider the isotropic constitutive equations in dependence of strain ε
and temperature θ

= − ∇q θ λ θ( ) 3 (5)

Fig. 1. Sketch of a typical control loop in adaptive optics. The incident primary
beam has the wavelength λδ and the intensity δ(r, φ, t). The OADM is used to
compensate for the distorted wavefront by addressing the extra intensity u(r, φ,
t) of wavelength λu into the OADM’s filter glass. With a displacement sensor in
the addressing unit, an internal feedback can be realized optionally. The wa-
vefront of the reflected primary beam is measured in the sensor unit.
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