
Contents lists available at ScienceDirect

Mechatronics

journal homepage: www.elsevier.com/locate/mechatronics

Robust predictive tracking control for a class of nonlinear systems

T.Q. Dinha,⁎, J. Marcoa, J.I. Yoonb, K.K. Ahnc

aWarwick Manufacturing Group (WMG), University of Warwick, Coventry CV4 7AL, UK
b Korea Construction Equipment Technology Institute, Jeollabuk-do Gunsan 573-540 Sandan-ro 36, Republic of Korea
c School of Mechanical Engineering, University of Ulsan, Namgu Muger2dong, Ulsan 680-749, Republic of Korea

A R T I C L E I N F O

Keywords:
Fuzzy
PID
Neural network
Grey predictor
Fuzzy cognitive map
Nonlinear system

A B S T R A C T

A robust predictive tracking control (RPTC) approach is developed in this paper to deal with a class of nonlinear
SISO systems. To improve the control performance, the RPTC architecture mainly consists of a robust fuzzy PID
(RFPID)-based control module and a robust PI grey model (RPIGM)-based prediction module. The RFPID
functions as the main control unit to drive the system to desired goals. The control gains are online optimized by
neural network-based fuzzy tuners. Meanwhile using grey and neural network theories, the RPIGM is designed
with two tasks: to forecast the future system output which is fed to the RFPID to optimize the controller
parameters ahead of time; and to estimate the impacts of noises and disturbances on the system performance in
order to create properly a compensating control signal. Furthermore, a fuzzy grey cognitive map (FGCM)-based
decision tool is built to regulate the RPIGM prediction step size to maximize the control efforts. Convergences of
both the predictor and controller are theoretically guaranteed by Lyapunov stability conditions. The effective-
ness of the proposed RPTC approach has been proved through real-time experiments on a nonlinear SISO system.

1. Introduction

Nowadays, automation in control has been applied more and more
in the modern life. However, most of industrial machines are nonlinear
systems with large uncertainties which cause challenges to design the
controllers. Conventional PID controllers are commonly used in in-
dustry due to their simplicity, clear functionality and ease of im-
plementation. However, this type of controllers may not perform well
for nonlinear, complex and vague systems with uncertainties. And it has
been found that fuzzy-logic-based PID controllers is one of potential
solutions with better capabilities of handling the aforesaid systems
[2–17].

Although fuzzy logic has a reputation of handling complicated
control problems, typical fuzzy designs depend largely on experiences
of experts [1–5]. Hence, these controllers cannot adapt for highly un-
certain systems working in environments with large perturbations
[9,12]. There is no systematic method to design and examine the
number of rules, as well as input space partitions and membership
functions (MFs). As a result, other control techniques, such as robust
control, intelligent theory and estimation methods [6–14], are needed
to combine with the fuzzy PID to overcome this weakness. Nevertheless,
most of the traditional control strategies adopted the previous state
information as the input signal of the controllers to make the decisions.
Subsequently, this type of control reflects only the current status and

lacks adaptability.
As a recent trend to overcome this drawback, fuzzy PID combined

with prediction theories could produce in advance the control action for
the following step according to the predicted value of control error
before it occurs [15,16]. And the combination with neural technique
and grey prediction is a feasible solution. Neural network is a universal
algorithm which is able to approximate almost nonlinear functions
[17–24] while the grey theory [25] is distinguished by its ability to deal
with systems that have partially unknown parameters [15,16,26–35].
However, there are the shortcomings of the typical grey models such as
grey sequence conditions and background series calculation which limit
their applicability as well as prediction accuracy [34,35]. Additionally,
there is no constraint to guarantee the prediction stability of these
developed models.

The aim of this paper is to develop a robust predictive tracking
control (RPTC) approach to improve performances of SISO systems with
large nonlinearities and uncertainties. The RPTC architecture mainly
consists of two modules: robust PI grey model (RPIGM) -based predic-
tion module and robust fuzzy PID (RFPID) -based control module with
the following contributions:

(1) To deal with any signal with random distribution, the RPIGM is
newly developed using a closed-loop control form in which the
robust prediction performance is ensured by a PI-based neural
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network controller.
(2) Outputs from the RPIGM module are fed to the RFPID control

module to optimize its parameters and, used to compensate for the
impacts of noises and disturbances on the overall system response.

(3) The RFPID of which the control gains are regulated by fuzzy tuners
is designed to drive the system to a desired goal. Based on the
RPIGM outputs, the control parameters are optimized in advance by
a neural network-based learning mechanism.

(4) A fuzzy grey cognitive map (FGCM) –based decision tool is built
and integrated to the RPIGM to regulate online the RPIGM pre-
diction step size in order to maximize the control capability.

(5) The robust performances of both the RFPID and RPIGM are guar-
anteed by the Lyapunov stability conditions.

As the result, the overall control performance with high accuracy,
fast response and stability can be achieved. This paper is organized as:
Section II shows the system description and the RPTC architecture.
Section III presents the design of the RFPID control module while the
design of the RPIGM prediction module is described in Section IV.
Illustrative examples via real-time experiments are provided and dis-
cussed in Section V to verify the effectiveness of the proposed control
methodology. Finally, concluding remarks are given in Section VI.

2. System description and RPTC design architecture

Without loss of generality, the RPTC control scheme is designed for
an uncertain nonlinear system (P) with single-input-single-output
(SISO) [12] as in Fig. 1. The proposed RPTC architecture with the two
modules, RFPID and RPIGM, is employed to drive the system to follow a
given reference (R) (the system response y(t)≡ yt needs to reach to the
desired level yr(t)≡ yrt).

At step (t+1)th with the tracking error, e(t)= yr(t)–y(t), the RFPID
generates a proper control action based on the PID algorithm,

+ ≡ + ≡ +u t u t u( 1) ( 1)RFPID m m t( 1). Meanwhile using the information of
yr(t) and y(t), the RPIGM estimates the system actuation p-step ahead of
time, ̂ ̂+ ≡ +y t p y( ) t p. This estimated response is then employed with
the p-step ahead desired set point, +y t p( )r , to optimize robustly the
RFPID parameters. Moreover, the RPIGM produces an additive control
correction, + ≡ + ≡ +u t u t u( 1) ( 1)RPIGP c c t( 1), which is added to the
main control signal +um t( 1), to compensate for system noises (N) and
disturbances (D). Therefore, the system control input generated by the
RPTC scheme is computed as

+ ≡ + = + + +u t u t u t u t( 1) ( 1) ( 1) ( 1)RPTC m c (1)

∫+ = + + + + +u t K t e t K t e t dt K t de t
dt
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where: e(t) is the control error; de(t) is the derivation of error e(t);
̂ ̂+ = + − +e t y t y t( 1) ( 1) ( 1)(0)
ND is the impact of noise and disturbance

on the system response, ̂ +y t( 1) is estimated by the RPIGM; KP(t+1),
KI(t+1), and KD(t+1) are the dynamic proportional, integral, and

derivative gains of the PID algorithm, respectively, regulated by fuzzy
inferences; Kc is the fixed conversion factor.

The detailed designs of the RFPID and RPIGM modules are in-
troduced in the following sections.

3. Robust fuzzy PID-based control module

Structure of the RFPID control module (shown in Fig. 1) is described
in Fig. 2a. This module includes two main blocks: a fuzzy PID me-
chanism, which is the combination of the PID algorithm and three fuzzy
tuners to regulate the PID gains via a robust updating rule (RUR), to
produce the control output, and a robust learning mechanism (RLM) to
optimize parameters of the fuzzy tuners.

3.1. Fuzzy PID mechanism

3.1.1. Fuzzy tuners
To minimize the tracking error, the PID gains, KP, KI and KD, are

online regulated using the three separate fuzzy tuners: fuzzy P, fuzzy I
and fuzzy D, respectively, as the following:

+ = + +
+ ∈

K t K U t K
U t A P I D

( 1) ( 1)Δ
( 1) (0, 1), ( is , or )

A
Fuzzy

A A
Fuzzy

A

A
Fuzzy

0

(4)

where = −K K KΔ A A A1 0 is the allowable deviation of KA; KA0, KA1 are
the minimum, maximum values of KA, respectively; +U t( 1)A

Fuzzy is the
bounded parameter and derived from the fuzzy tuner P or I or D. Thus,
one has + ⊂K t K K( 1) [ , ]A A A

min max .
Remark 1. For all the fuzzy tuners, triangle and singleton MFs are used
to represent for partitions of fuzzy inputs and outputs, respectively.
Fuzzy control is applied using local inferences. That means each rule is
inferred and the inferring results of individual rules are then
aggregated. Here, the most common inference using max-min
method, which offers a computationally nice and expressive setting
for constraint propagation, is selected. Finally, a defuzzification is
needed to obtain a crisp output from the aggregated fuzzy result. The
centroid defuzzification, which is widely used for fuzzy control
problems needing crisp outputs, is chosen to construct the fuzzy tuners.

From (2), (4) and using Remark 1, each fuzzy tuner are designed
with two inputs (as the most practical fuzzy PID type [12]) and one
output as depicted in Fig. 2b. For the optimisation purpose, each tuner
is structured in the network form with five layers. In the layer 1, the two
inputs x1 and x2 are the same for both the tuners and derived as normal
scales or absolute scales of the control error and its derivative, which
are depended on the symmetric behaviour of the system. The range for
each fuzzy input is correspondingly forced into range from− 1 to 1 or
from 0 to 1 by proper scaling factors (k1 and k2) chosen from the system
specifications. These inputs are then converted into fuzzy values via the
layer 2 using triangle MFs. Each MF of each input variable can be ex-
pressed in a general form as follows:

Fig. 1. Overall RPTC control architecture for a generic nonlinear system.
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