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A B S T R A C T

Direct yaw moment controllers improve vehicle stability and handling in severe manoeuvres. In direct yaw
moment control implementations based on Linear Quadratic Regulators (LQRs), the control system performance
is limited by the unmodelled dynamics and parameter uncertainties. To guarantee robustness with respect to
uncertainties, this paper proposes a gain scheduled Robust Linear Quadratic Regulator (RLQR), in which an extra
control term is added to the feedback contribution of a conventional LQR to limit the closed-loop tracking error
in a neighbourhood of the origin of its state-space, despite the uncertainties and disturbances acting on the plant.
In addition, the intrinsic parameter-varying nature of the vehicle dynamics model with respect to the long-
itudinal vehicle velocity can compromise the closed-loop performance of fixed-gain controllers in varying
driving conditions. Therefore, in this study the control gains optimally vary with velocity to adapt the closed-
loop system to the variations of this parameter. The effectiveness of the proposed RLQR in improving the ro-
bustness of a classical LQR against model uncertainties and parameter variations is proven analytically, nu-
merically and experimentally. The simulation and vehicle test results are consistent with the formal analysis
proving that the RLQR reduces the ultimate bound of the error dynamics.

1. Introduction

Modern vehicle dynamics control systems are critical to the en-
hancement of lateral vehicle stability and the reduction of fatal acci-
dents. In particular, vehicle control systems based on direct yaw mo-
ment control (DYC) enhance stability during cornering through the
difference of traction and braking forces among the left and right
wheels. DYC can be actuated through the friction brakes, torque-vec-
toring differentials, or individually controlled electric motors. The DYC
actuation through the friction brakes is desirable only in emergency
conditions, as it causes vehicle velocity reduction, and consequently
degrades drivability and comfort. On the other hand, torque-vectoring
differentials are characterized by significant mechanical complexity
and actuation delays. The DYC implementation through individually
controlled motors is more effective, because of the precise torque
controllability and fast dynamics of electric machines [1–4].

Typically, DYC systems adopt a hierarchical control structure,
consisting of three separate layers, namely the high-level controller, the

mid-level controller, and the low-level controllers. The high-level con-
troller is responsible for the reference generation at the vehicle level,
and usually outputs the reference yaw moment for the mid-level con-
troller, which distributes the torque demands among the available ac-
tuators (e.g., the electric motors and friction brakes), to generate the
reference yaw moment and overall vehicle torque demand. The low-
level controllers are responsible for the actuation of each individual
component, based on the respective reference signals from the mid-
level controller [5].

Different control techniques, such as model predictive control [6,7],
robust control [8–10] and sliding mode control [11,12], have been
proposed in the literature for the high-level controller. Linear Quadratic
Regulators (LQRs) are among the most common control structures for
DYC. To enhance the tracking performance for a wide range of long-
itudinal velocities, the solution of the Jacobi–Riccati equation of the
LQR optimisation was exploited in Refs. [13–15] to formulate variable
feedback and feedforward gains as functions of vehicle speed. However,
the closed-loop stability of the resulting control systems was not
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systematically investigated for time varying velocities. Furthermore,
LQRs suffer from limited gain margin against parameter variations and
external disturbances [16,17]. The robustness of the LQR im-
plementations depends on the selection of the weights in the cost
function to be minimised, which also affect the closed-loop response
[16]. Usually, such weights are the result of time-consuming trial-and-
error procedures to find a satisfactory trade-off between robustness and
performance [18]. Alternatively, to enhance system robustness without
increasing the design complexity, LQRs have been augmented with
Variable Structure Control (VSC) actions. For example, a robust sliding
mode yaw rate controller was proposed in [15] to address the tracking
problem under uncertain conditions. Ref. [19] presents a sliding mode
controller with time-varying sliding surfaces to solve the optimal con-
trol problem for both linear and nonlinear systems. Liu et al. [20] de-
veloped a LQR/VSC method based on the Planes Cluster Approaching
Mode (PCAM) to guarantee global asymptotic stability in presence of
parameter perturbations and unmodelled dynamics. However, despite
their theoretical effectiveness in suppressing bounded disturbances, the
discontinuous control terms, typically embedded in sliding mode con-
trollers, induce chattering on the control action. In automotive appli-
cations, chattering may result either in stress and wear of mechanical
and electrical parts, or in undesired vibrations during normal operation
[21]. In addition, if the discontinuous control action is smoothed to
mitigate chattering, often it is not possible to prove the asymptotic
convergence to zero of the tracking error, but only its boundedness
[21].

Considering these challenges, this paper proposes a novel approach
to improve LQR robustness in DYC applications, against model un-
certainties, real-time system parameter variations, and disturbances.
This allows confining the tracking error in a pre-assigned neighbour-
hood of the origin, despite the time-varying nature of the longitudinal
velocity, without adding discontinuous actions. More specifically, the
proposed control action consists of three terms: (i) a feedback con-
tribution whose gain is derived by solving the algebraic Riccati equa-
tion; (ii) a feedforward contribution based on the reference trajectory;
and (iii) a feedback robust control contribution to improve closed-loop
robustness with respect to unmodelled dynamics and parameter un-
certainties. All control gains are functions of the longitudinal velocity
for optimal tuning for a wide range of speeds. Therefore, the controller
belongs to the class of gain scheduled Robust Linear Quadratic
Regulators (RLQRs). The proposed RLQR also allows the decoupled
design of the LQR and robust contributions, thus avoiding time-con-
suming tuning procedures for the selection of the LQR weights, which
can be chosen without considering model approximations and dis-
turbances. Then, based on the Riccati solution, the robust term is de-
signed to suppress uncertainties. The closed-loop tracking error dy-
namics are analytically proven to be globally uniformly ultimately
bounded. An upper limit for the ultimate bound (i.e., the maximum
residual error when time tends to infinity [22]) is formulated, by con-
sidering the plant as a parameter-varying system [23]. Hence, un-
wanted dynamics, which can be induced by gain scheduling strategies
[24], cannot emerge. The ultimate bound is inversely proportional to
the gain of the robust contribution, which confirms the benefit of the
proposed feedback structure. For its numerical validation, the novel
RLQR is embedded in the IPG CarMaker simulation model of a proto-
type electric Range Rover Evoque with individually controlled motors
on the front and rear axles. A quantitative comparison shows that the
novel RLQR outperforms the gain scheduled LQR in [13], in terms of
residual tracking error, peak yaw rate error and absolute value of the
control action. Experimental results on the same electric vehicle con-
firm the applicability and effectiveness of the control strategy.

The paper is organized as follows. Section 2 describes the vehicle
model for control system design and reference generation. Section 3
focuses on the control problem definition and control law formulation,
while Section 4 deals with the analysis of the closed-loop tracking error
dynamics through a Lyapunov approach. A vehicle simulation analysis

for different manoeuvres is carried out in Section 5, while Section 6
discusses the implementation and performance of the controller on the
case study electric vehicle demonstrator. Conclusions are summarised
in Section 7, together with possible future developments.

2. Vehicle system modelling and reference behaviour design

This section formulates the model for control system design and an
appropriate set of reference signals, based on the vehicle handling and
stability characteristics. To this aim, the bicycle vehicle model, shown
in Fig. 1, is used. In the figure δ is the steering angle, vx and vy are the
longitudinal and lateral components of vehicle velocity, Fyf and Fyr are
the front and rear lateral tyre forces, r is the vehicle yaw rate, β is the
vehicle sideslip angle, and La and Lb are the front and rear semi-
wheelbases. Despite its simplicity, the model reproduces the main
handling and stability characteristics of a vehicle during cornering.
Hence, it is often used in the literature in the control design stage.

The equations of motion are:

+ = +m v β v r F F( ˙ ) ,x x yf yr (1)

= − +I r L F L F u˙ ,z a yf b yr (2)

where Iz is the yaw mass moment of inertia, m is the vehicle mass, and u
is the direct yaw moment, i.e., the control input. Since the actuator
bandwidth is usually much larger than that of the closed-loop system
[1,13,15], its dynamics are neglected in the control system design
phase. Furthermore, in accordance with [13,14], a linear approxima-
tion of the lateral forces is used, thus:

=F C α ,yf αf f (3)

=F C α ,yr αr r (4)

where Cαf and Cαr are the cornering stiffness of the front and rear axles,
and αf and αrare the front and rear slip angles, given by:
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By combining (1)–(6), the state-space formulation of the vehicle
model can be expressed as:

= + +x Ax Bu Eδ˙ , (7)

where u is the control yaw moment, =x β r[ ]T is the system state
vector, while the system matrices are:

Fig. 1. The two-degree-of-freedom bicycle model.
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