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A B S T R A C T

This paper presents a robust observer based on energy-to-peak filtering in combination with a neural network for
vehicle roll angle estimation. Energy-to-peak filtering estimates the minimised error for any bounded energy
disturbance. The neural network acts as a ‘pseudo-sensor’ to estimate a vehicle ‘pseudo-roll angle’, which is used
as the input for the energy-to-peak-based observer. The advantages of the proposed observer are as follows. 1) It
does not require GPS information to be utilised in various environments. 2) It uses information obtained from
sensors that are installed in current vehicles, such as accelerometers and rate sensors. 3) It reduces computation
time by avoiding the calculation of observer gain at each time sample and utilising a simplified vehicle model. 4)
It considers the uncertainties in parameters of the vehicle model. 5) It reduces the effect of disturbances. Both
simulation and experimental results demonstrate the effectiveness of the proposed observer.

1. Introduction

Currently, rollover accidents account for approximately 33% of all
motor vehicle deaths [1]. To reduce the occurrence of this type of ac-
cident is one of the main objectives in the design of vehicle control
systems [2]. Vehicle control systems that aim to improve vehicle roll-
over behaviour are called roll stability control (RSC) systems.

The majority of RSC systems require knowledge of vehicle roll angle
to calculate lateral load transfer and properly coordinate control sys-
tems. Vehicle roll angle can be directly measured using a GPS dual-
antenna. The disadvantage of this technique is that it is very costly. For
this reason, vehicle roll angle should be estimated.

However, the estimation of vehicle roll angle must be performed in
real time using the sensors installed on-board in current vehicles to
achieve acceptable RSC controller performance [3].

In [4] and [5], GPS information was fused with information ob-
tained from sensors installed in vehicles, such as inertial navigation
system (INS) sensors, wheel speed sensors, and steering angle sensors.

The problem with using GPS is the difficulty in achieving accurate
readings because of the limited visibility of satellites in both urban and
forested driving environments. In [6], vehicle roll angle was estimated
using information from suspension deflection sensors and a lateral ac-
celerometer. However, this technique does not provide accurate results

[7] and is very costly because the required sensors are typically not
installed in vehicles.

In [8], a dynamic vehicle roll angle observer that fuses information
obtained from a lateral accelerometer and gyroscope was designed.
However, the drawback of this algorithm is that the estimated vehicle
roll angle transient response contains a crucial error.

A common method used to fuse information from different sensors is
the Kalman filter. In [7,9–11], a Kalman filter was utilised to estimate
vehicle roll angle. The drawbacks of using a Kalman filter are as fol-
lows: 1) the model and measurement noises must be known, 2) the
vehicle model must be precise, and 3) the gain matrix must be calcu-
lated at each time sample. If the first condition is not met, the perfor-
mance of the Kalman filter may be degraded [12]. Additionally, the last
condition leads to increased computation time.

To handle system uncertainties and varying parameters, a robust
observer and controller must be designed. In [13–15], robust con-
trollers were proposed to improve the lateral behaviour of a vehicle.
Robust observers have also been proposed to estimate vehicle sideslip
angle, [16,17] and vehicle longitudinal velocity [18]. However, there is
a lack of research on the design of a robust observer related to vehicle
roll angle.

The majority of previous methods use physical models for the esti-
mation of vehicle states. However, when a model has nonlinear
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characteristics and parameters are difficult to determine, as in the case
of vehicles, one potential solution is the use of artificial intelligence. In
[19] and [20], vehicle sideslip angle was estimated using a neural
network (NN) and adaptive neural fuzzy inference system (ANFIS). In
[7], an NN was used for vehicle roll angle estimation. The problem in
these methods is that sensor noise strongly affects variable estimation.
In [7] and [21], integration of an ANFIS and NN with a Kalman filter
was performed for estimating vehicle sideslip angle and vehicle roll
angle, respectively. In these works, improved results for the ANFIS and
NN were obtained when a Kalman filter was combined with previous
methodologies.

Considering the aforementioned disadvantages of the Kalman filter,
we focus on the development of a robust observer based on energy-to-
peak filtering in combination with an NN for vehicle roll angle esti-
mation. Energy-to-peak filtering estimates the minimised error for any
bounded energy disturbance.

The design of our observer is based on the following criteria:

• To facilitate system use in all types of environments, we must not
use GPS information.

• Utilise information obtained from sensors that are installed in cur-
rent vehicles, such as accelerometers and rate sensors.

• Reduce computation time by avoiding the calculation of observer
gain at each time sample and utilising a simplified vehicle model.

• The proposed algorithm must be usable in different road conditions.

• We must consider the uncertainties in parameters of the vehicle
model.

• We must attenuate the effects of external disturbances.

The remainder of this paper is organised as follows. Section 2 de-
scribes the vehicle model used by the proposed observer. Section 3
introduces the observer architecture that is formed by an ‘NN module’
and ‘energy-to-peak filtering module’. In Section 4, simulation and ex-
perimental results are presented to verify the effectiveness of the pro-
posed observer. Finally, our conclusions are summarised in Section 5.

2. Vehicle model

In this study, a one degree-of-freedom vehicle model, as shown in
Fig. 1, is used to describe vehicle roll motion. A detailed description of

this model can be found in [7].
A linear parameter varying (LPV) model of the vehicle roll dynamic

can be represented as:

= + + + +x A A x B B a Hw˙ ( Δ ) ( Δ )0 0 0 0 0 0 ym (1)
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where x0 is the state vector, ϕ ϕ[ , ˙ ] ,T ϕ is the vehicle roll angle, ϕ̇ is the
vehicle roll rate, ymeas is the measurement vector, aym is the lateral
acceleration measured by a sensor at the centre of gravity (COG) of the
vehicle, w is the unknown and bounded external disturbance, q is the
measurement noise, and ΔA0 and ΔB0 represent the system un-
certainties for the matrices A0 and B0, respectively:
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Ixx is the sprung mass moment of inertia with respect to the roll axis, ms

is the sprung mass, hcr is the sprung mass height about the roll axis, CR

represents the total torsional damping, KR is the stiffness coefficient, g is
the acceleration due to gravity, and ΔKR, ΔCR, Δhcr, and Δms are the
maximum uncertainties of KR, CR, hcr, and ms, respectively. C0 is the
output matrix:
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and, finally,

=H I x2 2 (5)

To simply analyse, the following considerations have been taken
into account:
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Then, the uncertainty matrices can be rewritten as:
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3. Vehicle roll angle observer design

In this section, our vehicle roll angle observer is described. Fig. 2Fig. 1. Vehicle roll model.
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