ARTICLE IN PRESS

Mechatronics xxx (2015) xxx-xxx

Contents lists available at ScienceDirect

Mechatronics

journal homepage: www.elsevier.com/locate/mechatronics

Direct yaw moment control actuated through electric drivetrains and friction brakes: Theoretical design and experimental assessment

Leonardo De Novellis^a, Aldo Sorniotti^{a,*}, Patrick Gruber^a, Javier Orus^b, Jose-Manuel Rodriguez Fortun^b, Johan Theunissen^c, Jasper De Smet^c

^a University of Surrey, United Kingdom ^b Instituto Tecnológico de Aragón, Spain ^c Flanders' Drive, Belgium

ARTICLE INFO

Article history: Received 8 June 2014 Accepted 22 December 2014 Available online xxxx

Keywords: Direct yaw moment control Fully electric vehicle Yaw rate Sideslip Friction brake

ABSTRACT

A significant challenge in electric vehicles with multiple motors is how to control the individual drivetrains in order to achieve measurable benefits in terms of vehicle cornering response, compared to conventional stability control systems actuating the friction brakes. This paper presents a direct yaw moment controller based on the combination of feedforward and feedback contributions for continuous yaw rate control. When the estimated sideslip exceeds a pre-defined threshold, a sideslip-based yaw moment contribution is activated. All yaw moment contributions are entirely tunable through modelbased approaches, for reduced vehicle testing time. The purpose of the controller is to continuously modify the vehicle understeer characteristic in quasi-static conditions and increase yaw and sideslip damping during transients. Skid-pad, step-steer and sweep steer tests are carried out with a front-wheel-drive fully electric vehicle demonstrator with two independent drivetrains. The experimental test results of the electric motor-based actuation of the direct yaw moment controller are compared with those deriving from the friction brake-based actuation of the same algorithm, which is a major contribution of this paper. The novel results show that continuous direct yaw moment control allows significant "ondemand" changes of the vehicle response in cornering conditions and to enhance active vehicle safety during extreme driving maneuvers.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The majority of the fully electric vehicles currently on the market have a basic drivetrain configuration, consisting of a single onboard electric motor drive, which is connected to the driven wheels through a single-speed transmission, an open differential and half-shafts [1–5]. However, many industrial and academic researchers are developing drivetrain layouts with multiple motors [6,7], which promise considerable performance enhancements in terms of vehicle behavior and active safety. Hence, the assessment and optimization of the performance achievable through different drivetrain configurations for fully electric vehicles is one of the main areas in automotive research.

For instance, two electric motors installed on the same axle allow a direct yaw moment control (also defined as torque-vectoring), i.e., the generation of a yaw moment through an asymmetric wheel torque distribution [8,9]. The yaw moment can be achieved without varying the overall wheel torque in traction or braking conditions, unless the electric motor drives are operating close to their torque limits. A similar decoupling between yaw moment and wheel torque demand can be achieved through the adoption of a central electric motor drive and a torque-vectoring differential [10], or through the drivetrain concept presented in [11], consisting of a main motor for vehicle traction and a second motor providing the required torque-vectoring effect.

Mechatronics

Direct yaw moment control is also the fundamental idea behind existing vehicle stability control systems for internal combustion engine-driven vehicles [12–14]. These systems keep the vehicle within its stability limits, through engine torque reduction and actuation of individual friction brakes. However, in this case the yaw moment generation is achieved at the price of an increased overall braking torque, which reduces vehicle speed. Therefore, the friction brake-based intervention of stability control systems is mainly carried out as an emergency measure, only when the offset between the reference and actual values of vehicle yaw rate or sideslip angle goes beyond an assigned threshold [12,15].

http://dx.doi.org/10.1016/j.mechatronics.2014.12.003

0957-4158/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as: De Novellis L et al. Direct yaw moment control actuated through electric drivetrains and friction brakes: Theoretical design and experimental assessment. Mechatronics (2015), http://dx.doi.org/10.1016/j.mechatronics.2014.12.003

^{*} Corresponding author. Tel.: +44 (0)1483 689688. *E-mail address:* a.sorniotti@surrey.ac.uk (A. Sorniotti).

2

L. De Novellis et al./Mechatronics xxx (2015) xxx-xxx

Nomenclature

The subso	cripts 'F' and 'R' respectively refer to the front axle and the	J _{t1}	mass moment of inertia of the transmission primary shaft
	the first and second time derivatives of a variable. The sym-	J _{t2}	mass moment of inertia of the transmission secondary
	bol ' \wedge ' indicates an estimated variable. The symbol ' $_0$ ' indi-	La	mass moment of inertia of the transmission output shaft
	cates an initial condition or a steady-state value. The	Jt3 I	mass moment of inertia of the wheel
	subscripts 'MIN' and 'MAX' respectively indicate the mini-	Jw Iz	vehicle vaw moment of inertia
	mum and maximum values of a variable.	k^{J^2}	discretization index
a	Iront semi-wheelbase	k khc	half-shaft torsion stiffness
a_x	iongitudinal venicle acceleration	Kp	proportional gain of the yaw rate controller
$u_{x,8s}$	ing the S c following the steering wheel input	Kh	fitting factor of the caliper volume displacement model
a	lateral vehicle acceleration	K_{II}^{lin}	understeer gradient in the linear part of the understeer
a_y	Idelial vehicle acceleration in the linear region of the	U	characteristic
u_y	understeer characteristic	K_{β}	proportional gain of the sideslip controller
ARCD	matrices of the continuous state-snace formulation of	L	wheelbase
Π, D, C, D	the system	l_p	half length of tire contact patch
Aniston	area of the brake caliper piston	m	vehicle mass
A_{r}, B_{r}, C_{r}	D_{rr} E_{rr} F_{rr} G_{rr} terms of the vaw rate transfer functions	M_{z}	generic yaw moment
h	rear semi-wheelbase	M_z^{FB}	feedback part of the yaw moment contribution based on
BCA. CCA.	D_{C4} , H_{C4} , u , v matrices and weight defining the wheel		yaw rate
-00 -00	torque distribution criteria (control allocation)	$M_{z,dyn}^{FF}$	dynamic part of the feedforward yaw moment contribu-
С	axle cornering stiffness		tion
CAVC	Active Vibration Controller gain	$M_{z,r}$	reference yaw moment from the yaw rate controller
Chs	half-shaft torsion damping coefficient	$M_{z,stat}^{rr}$	static part of the feedforward yaw moment contribution
C _n	stiffness parameter of the brush tire model	$M_{z,tot}^+$	reference yaw moment before saturation
<i>C</i> valve	valve coefficient (including orifice dimension and dis-	M _{z,tot}	reference yaw moment after saturation
	charge coefficient)	$M_{z,\beta}$	sideslip part of the yaw moment
c_1, c_2	weighting factors used within the PSO algorithm	n	number of iterations of the PSO algorithm
d	track width	OS_r	yaw rate overshoot
D	disturbance term of the state-space formulation	p_{acc}	accumulator pressure in the electro-hydraulic braking
DR	damping ratio		system unit
e _r	yaw rate error	p_b	callper pressure
e_t	anti-windup variable, equal to the difference between	\mathbf{P}_h	welocity of the particle <i>n</i>
	the unsaturated yaw moment, $M_{z,tot}^+$, and the saturated	r _{m,MAX} α	global bost position of the swarm
	yaw moment, M _{z,tot}	Ч а.	position of the particle h
e_{β}	sideslip angle error	\mathbf{q}_h	best position of particle h
f	number of step steers considered within the PSO algo-	\mathbf{q}_h	flow rate through the equivalent value of the electro-
c	rithm	Qb	hydraulic braking system
f_r	tire rolling resistance coefficient	r	vaw rate
F_{X}	longitudinal tire force	rmay;	peak value of vehicle vaw rate during the specific step
F_y	lateral tire force	· WIAAJ	steer test
ry	aleral life force contribution in the matrix D of the sin-	r _{ref SS}	steady-state reference vaw rate
E	gle-tiack vehicle model	r_{ref}	reference yaw rate
Γ _Z		r _{MAX}	maximum value of yaw rate measured during a step
$G_{dyn}^{\prime \prime}$	transfer function from δ to $M_{z,dyn}^{\prime\prime}$		steer test
G_f	increment of torque demand oscillation frequency per	r_1, r_2	randomly generated numbers with uniform distribution
-	unit time during the tests of Figs. 4 and 5		between 0 and 1
G _{r,dyn}	transfer function between $r_{ref,SS}$ and r when the effect of	R	skid pad radius
-	the dynamic feedforward contribution is not included	R_l	laden radius of the tire
G _{r,dyn}	reference transfer function from $r_{ref,SS}$ to r_{ref}	S	Laplace operator
G_{M_z}	transfer function from M_Z to r	t	time
G_{δ}	transfer function from δ to r	t_{MAX}	time at which r_{MAX} is achieved
n h	height of the contex of gravity	t _{rise}	rise time
n _{CG}	neight of the first transmission stage	t _{settling}	settling time
l_{t1}	gear ratio of the second transmission stage	T_b	friction brake torque
l_{t2}	index referring to the step steers considered within the	T_D	derivative parameter of the PID controller
J	PSO algorithm	I _{hs}	nalf-snaft torque
I	cost function to be minimized within the control alloca-	I_I	Integral parameter of the PID controller
J	tion algorithm	I _m	electric motor torque
Inc	mass moment of inertia of the half-shafts	I _{m,amp}	Electric motor torque amplitude during the tests of
Jns Im	mass moment of inertia of the rotating parts of the elec-	т	Figs. 4 dill J
JIII	tric motor	1 m,av	average torque of the electric motor during the tests of
Ir	cost function to be minimized by the PSO algorithm	Τ.	electric motor torque demand
		▪ m,dem	cicette notor torque demand

Please cite this article in press as: De Novellis L et al. Direct yaw moment control actuated through electric drivetrains and friction brakes: Theoretical design and experimental assessment. Mechatronics (2015), http://dx.doi.org/10.1016/j.mechatronics.2014.12.003

Download English Version:

https://daneshyari.com/en/article/7127590

Download Persian Version:

https://daneshyari.com/article/7127590

Daneshyari.com