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Far-field diffraction of linear chirped gratings
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a b s t r a c t

We analyze the far-field diffraction pattern produced by linear spatial chirped gratings. An intuitive ana-
lytical interpretation of the generated diffraction orders is proposed for gratings with linear variation of
the period and linear variation of the spatial frequency. Also, experiments using Gaussian beams and
plane wave illumination are performed. The analytical expressions are compared to numerical and exper-
imental results, showing a high agreement. Chirped gratings can be implemented in interesting applica-
tions: we analyze how they can be used as a deflector, since tunable direction of diffracted orders can be
achieved by displacing laterally the grating with respect to the incident light beam. Also the angular
width of diffraction orders can be controlled and chirped gratings can be used to generate uniform illu-
mination over a controlled angular range. These two applications have also been experimentally shown.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Diffraction gratings are one of the most common optical ele-
ments, which consist of a periodical pattern that modulates the
incident light beam. As it is well known, a diffraction grating pro-
duces diffraction orders at the far field that propagate along direc-
tions hn given by the grating equation, p sin hn ¼ nk, where k is the
incident wavelength, n is an integer which represents the diffrac-
tion order, and p is the period of the grating, which typically is con-
stant. In the recent years, quasi-periodic structures have aroused
interest in the optical community [1–10]. For example, in the tem-
poral range, chirped fiber gratings are used as a solution for disper-
sion compensation [11]. In the spatial range, chirped gratings (CGs)
have also been applied to produce curved diffraction orders [12], to
extend the bandwidth in surface plasmon applications [13], as
spectral selective elements in optical spectrometers and
monochromators [8,14], in external cavity semiconductor laser
diodes [15,16], and as a nanometer gap measurement device [2].
Their advantages as focusing elements have been applied [4], and
they have also been used as reference marks in position optical
encoders [17].

From a theoretical point of view, CGs have been analyzed using
a geometrical scheme [8], the ABCD matrix formalism [3], and also
Fresnel approach for the near field (pseudo-self-imaging forma-
tion) [7]. Nevertheless, the far-field optical properties of CGs have
not been investigated yet. Since CGs do not present a periodic

structure, an analysis based on Fourier series and diffraction orders
can only be performed in some particular cases. In this work, we
analyze the far-field diffraction pattern produced by CGs of two
kinds: p-chirped and q-chirped which correspond to linear varia-
tion of the period of the grating and linear variation of the spatial
frequency of the grating respectively. Analytical expressions to
explain the diffraction orders behavior produced by this kind of
non-periodical grating are obtained, which are compared to
numerical simulations and experimental results. Simulations
based on Fast Fourier Transform and experimental results for q-
chirped diffraction gratings are obtained, which corroborates the
theoretical approach. Due to the structure of the far field diffrac-
tion pattern, CGs can be used in interesting applications, such as
a deflector which can easily change the angle of the diffraction
orders just moving the grating perpendicularly to the beam, or as
a line generator since, for highly chirped gratings, the width of
the diffraction orders can be controlled with the initial and final
period of the grating.

2. Theoretical analysis

A CG of length L is defined in the real space by its initial and
final periods, p0 and p1, and its variation rate of the lattice, pa.
Alternatively, in the reciprocal space the CG its defined by its initial
and final spatial frequencies, q0 ¼ 2p=p0 and q1 ¼ 2p=p1 and its
variation rate, qa. We define two illustrative cases with linear vari-
ation in the real and reciprocal space, the p-chirped and q-chirped
gratings
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pðxÞ ¼ pc þ pa x; qðxÞ ¼ qc þ qa x; ð1Þ
where pc ¼ ðp0 þ p1Þ=2;pa ¼ ðp1 � p0Þ=L; qc ¼ ðq0 þ q1Þ=2, and
qa ¼ ðq1 � q0Þ=L, respectively. The center of the grating is located,
without loss of generality, at x ¼ 0. Both gratings are generated by
binarizing the sign of

tðxÞ ¼ bin cos
Z x

gðx0Þdx0
� �� �

; ð2Þ

where gðx0Þ is replaced by the frequency for p- or q-CGs. Therefore,
the q-CG is defined as

tqðxÞ ¼ bin cos
Z x

qðx0Þdx0
� �� �

¼ bin cos qcxþ
1
2
qax

2
� �� �

ð3Þ

and the p-CG grating is defined as

tpðxÞ ¼ bin cos
Z x 2p

pðx0Þdx
0

� �� �
¼ bin cos

2p
pa

logðpc þ paxÞ
� �� �

:

ð4Þ
In Fig. 1 we can see an example of both gratings.
The next step is to analyze how these CGs behave in the far field

when they are illuminated with a monochromatic Gaussian light
beam whose beam width, x0, is placed at the plane of the CG,

z ¼ 0, and it is centered at xg : u0ðxÞ / exp½�ðx� xgÞ2=x2
0�. Since

the proposed p-CGs and q-CGs are not periodical, a simple analysis
of the far field diffraction pattern is not possible. Nevertheless,
after binarization, both p-chirped and q-chirped diffraction grat-
ings can be described as

taðxÞ ¼
X
n

anei n f aðxÞ; ð5Þ

where a ¼ p; q; f pðxÞ ¼ 2p
pa

logðpc þ paxÞ, f qðxÞ ¼ qcxþ 1
2 qax

2; an are

the Fourier coefficients of the grating, and n are entire numbers.
On the other hand, the field after the q-CG can be described as

u1;qðxÞ ¼ u0ðxÞtqðxÞ / e
� x�xgð Þ2

x2
0

X
n

ane
i n qcxþ1

2qax
2ð Þ; ð6Þ

The far field intensity distribution is obtained using Fraunhofer
approximation by solving

uqðhÞ /
Z þ1

�1
u1;qðxÞe�i k x sin hdx; ð7Þ

where k ¼ 2p=k is the wavenumber. This integral for q-CGs is easily
solved, since there are only linear and quadratic terms in the expo-
nential, resulting

uqðhÞ /
X
n

anffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� inqax2

0

q e
� xg

x0

	 
2

e
�

k sin h�n qcþ2ixg =x2
0ð Þ2

4=x2
0
�2i n qa ; ð8Þ

When there is not interference between orders, the intensity
distribution at the far field results in IaðhÞ ¼

P
nunðhÞu�

nðhÞ, being
un the amplitude for each diffraction order. Considering Eq. (8),
we obtain

IqðhÞ /
X
n

anj j2
xq

e
� k sin h�n qcþqaxgð Þ½ �2

x2
n;q ; ð9Þ

wherexn;q ¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=x0ð Þ2 þ nqax0=2ð Þ2

q
is the angular width of the

diffraction order n. For the limit qa ! 0 we recover the far field
diffraction pattern produced by a periodical grating. Now, let us
analyze which are the differences between standard periodic grat-
ings and q-CGs. In the first place, we can see that q-CGs produce
diffraction orders which propagate following the grating equation,
where the frequency for determining the angular separation of
orders is that at the center of the Gaussian beam:

k sin h ¼ n ðqc þ qaxgÞ; ð10Þ
These diffraction orders present a total power proportional to anj j2.
On the other hand, the angular width of diffraction orders, xn;q, is
not constant but it increases with the diffraction order n and the
chirping parameter qa. In Fig. 2a we can see an example of far field
diffraction pattern obtained with Eq. (9). It is clear that the width of
the diffraction orders is not equal, as for the case of constant period
diffraction gratings, but depends on the order. This far field diffrac-
tion pattern is compared to that obtained numerically with the Fast
Fourier Transform of the field after the grating FFT½u1;qðxÞ�

�� ��. There is
an excellent agreement between analytical and numerical
approaches.

For the case of p-CGs, that is, gratings with a linear variation in
the period, the integral required to determine the far field diffrac-
tion pattern

upðhÞ /
X
n

an

Z þ1

�1
e� x�xgð Þ2=x2

0ei n
2p
pa

logðpcþpaxÞe�i k x sin hdx; ð11Þ

cannot be solved analytically, and an approximation is required. For
this, we have performed a quadratic series expansion of logarithm
in second exponential resulting in

ei n
2p
pa

logðpcþpaxÞ � e
i2pnpa

log pcð Þþpa
pc
x� p2a

2p2c
x2

h i
:

Fig. 1. q- and p-chirped binary amplitude diffraction gratings with starting period p0 ¼ 50 lm, final period p1 ¼ 10 lm, and length L ¼ 500 lm.
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