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Abstract: A nonlinear rolling-horizon model-predictiv e hierarchical coordinated 
ramp metering scheme is presented. The hierarchical co ntrol structure consists of 
three layers: the estimation/prediction layer, the opti mization layer and the direct 
control layer. The second layer incorporates the prev iously designed optimal control 
tool AMOC while the local feedback strategy ALINEA is  used in the third layer. 
Simulation results are presented for the Amsterdam ring -road. It is shown that 
control of all on-ramps including freeway intersection s leads to the optimal 
utilization of the available infrastructure.  &RS\ULJKW��������,)$& 
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ALINEA; freeway traffic control. 

 
 

1. INTRODUCTION 
 

Ramp metering aims at improving the traffic 
conditions by appropriately regulating the inflow 
from the on-ramps to the freeway mainstream and is 
deemed as one of the most effective control measures 
for freeway network traffic. One of the most efficie nt 
local ramp metering strategies is the ALINEA 
feedback strategy and its variations (Papageorgiou, HW�
DO�, 1991, 1998; Smaragdis and Papageorgiou, 2003; 
Smaragdis, HW� DO�, 2004). A number of design 
approaches have been proposed for coordinated ramp 
metering. These include multivariable control 
(Diakaki and Papageorgiou, 1994) and optimal 
control (Bellemans, HW�DO�, 2002; Hegyi, HW�DO�, 2003; 
Gomes and Horowitz, 2004). Kotsialos HW�DO. (2002b) 
presented AMOC, an open-loop control tool which 
combines a nonlinear formulation with a powerful 
numerical optimization algorithm and is able to 
consider coordinated ramp metering, route guidance 
as well as integrated control combining both control 
measures. In (Kotsialos and Papageorgiou, 2001, 
2004) the results from AMOC’s application to the 
problem of coordinated ramp metering at the 
Amsterdam ring-road are presented in detail. A more 
detailed overview of ramp metering algorithms may 
be found in (Papageorgiou and Kotsialos, 2002). 

 

Due to various inherent uncertainties, the open-loop 
optimal solution becomes suboptimal when directly 
applied to the freeway traffic process. In this paper, 
the optimal results are cast in a model-predictive 
frame and are viewed as targets for local feedback 
regulators which leads to a hierarchical control 
scheme. 
 

The rest of this paper is structured as follows. In 
section 2 the freeway network traffic flow model used 
for both simulation and control design purposes is 
briefly described. Section 3 introduces the 
formulation of the optimal control problem for ramp 
metering. The hierarchical control structure is 
described in section 4 while the results of applying 
ALINEA, as a stand-alone strategy, and the proposed 
hierarchical strategy are presented in section 5. 
Finally, conclusions and directions for future work 
are outlined in section 6. 
 

2. TRAFFIC FLOW MODELLING 
 

A validated second-order traffic flow model is used 
for the description of traffic flow on freeway 
networks and provides the modeling part of the 
optimal control problem formulation. In fact, the 
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same model is used in this paper for the traffic flow 
simulator (METANET) (Messmer and Papageorgiou, 
1990) and for the control strategy (AMOC) albeit 
with different external disturbances. 
 

The network is represented by a directed graph 
whereby the links of the graph represent freeway 
stretches. Each freeway stretch has uniform 
characteristics, i.e., no on-/off-ramps and no major 
changes in geometry. The nodes of the graph are 
placed at locations where a major change in road 
geometry occurs, as well as at junctions, on-ramps, 
and off-ramps. 
 

The time and space arguments are discretized. The 
discrete time step is denoted by 7  (typically 

107 V� ). A freeway link P  is divided into P1  
segments of equal length P/  (typically 500P/ P� ), 
such that the stability condition ,P I P/ 7 υ≥ ⋅  holds, 
where ,I Pυ  is the free-flow speed of link P . This 
condition ensures that no vehicle traveling with free 
speed will pass a segment during one simulation time 
step. Each segment L  of link P  at time W N7= , 

0,...,N .= , where .  is the time horizon, is 
macroscopically characterized via the following 
variables: the WUDIILF�GHQVLW\ ( ),P L Nρ  (veh/lane/km) is 
the number of vehicles in segment L  of link P  at 
time W N7=  divided by P/  and by the number of 
lanes PΛ ; the PHDQ� VSHHG ( ),P L Nυ  (km/h) is the 
mean speed of the vehicles included in segment L  of 
link P  at time W N7= ; and the WUDIILF�YROXPH or IORZ 

( ),P LT N  (veh/h) is the number of vehicles leaving 
segment L  of link P  during the time period 

( ), 1N7 N 7+   , divided by 7 . The evolution of 
traffic state in each segment is described by use of the  
interconnected state equations for the density and 
mean speed respectively (Kotsialos and 
Papageorgiou, 2001, 2004). Roughly speaking, the 
flow increases with increasing density until a density 
critical value is reached, at which flow becomes 
maximum ( ,FDSTµ ). After this critical density, 
congestion sets on and the flow decreases reaching 
virtually zero at a jam density value. 
 

 
 
Fig. 1. The origin-link queue model. 
 
For origin links, i.e., links that receive traffic dema nd 

RG  and forward it into the freeway network, a simple 
queue model is used (Fig. 1). The outflow RT  of an 
origin link R  depends on the traffic conditions of the 
corresponding mainstream segment ( ,1µ ), the ramp’s 
queue length RZ  (veh) and the existence of ramp 

metering control measures. If ramp metering is 
applied, then the outflow ( )RT N  that is allowed to 
leave origin R  during period N, is a portion ( )RU N  of 
the maximum outflow that would leave in absence of 
ramp metering. Thus, ( ) min, ,1R RU N U ∈    is the 
metering rate for the origin linkR , i.e., a control 
variable, where min,RU  is a minimum admissible value; 
typically, min, 0RU >  is chosen in order to avoid ramp 
closure. If ( ) 1RU N = , no ramp metering is applied. A 
similar approach applies to freeway-to-freeway (ftf) 
interchanges. The evolution of the origin queue RZ  is 
described by an additional state equation 
(conservation of vehicles). Note that the freeway f low 

,1Tµ  in merge segments is maximized if the 
corresponding density ,1µρ  takes values near the 
critical density ,FUµρ . 
 

Freeway bifurcations and junctions (including on-
ramps and off-ramps) are represented by nodes. 
Traffic enters a node Q  through a number of input 
links and is distributed to the output links. The 
percentage of the total inflow at a bifurcation node Q  
that leaves via the outlink P  is the turning rate P

Qβ . 
 

3. FORMULATION OF THE OPTIMAL CONTROL 
PROBLEM 

 
The overall network model has the state-space form 

 ( ) ( ) ( ) ( )1 , ,N N N N+ =   [ I [ X G  (1) 

where the state of the traffic flow process is describ ed 
by the state vector 1∈[ � and its evolution depends 
on the system dynamics and the input variables. Input  
variables are distinguished into control variables 

0∈X �  and external disturbances '∈G � . In this 
case, vector [  consists of the densities ,P Lρ  and mean 
speeds ,P Lυ  of every segment L  of every link P  as 
well as the queues RZ  of every origin R . The control 
vector X  consists of the ramp metering rates RU  of 
every on-ramp R  under control, 
with ( ),min 1R RU U N≤ ≤ . Finally, the disturbance vector 
consists of the demands RG  at every origin of the 
network and the turning rates P

Qβ  at the network’s 
bifurcations. The disturbance trajectories ( )NG must 
be known over the time horizon 3.  for optimal 
control. For practical applications, these values may  
be predicted more or less accurately based on 
historical data or on real-time estimations (Wang HW�
DO., 2003). 
 
The coordinated ramp metering control problem is 
formulated as a discrete-time dynamic optimal control 
problem with constrained control variables and can be  
solved numerically over a given optimization horizon 

3.  (Papageorgiou and Marinaki, 1995). The chosen 
cost criterion is the Total Time Spent (TTS) of all 
vehicles in the network (including the waiting time 
experienced in the ramp queues) which is a natural 
objective for the traffic systems considered. Penalty 
terms are added appropriately to the cost criterion in 
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