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a b s t r a c t

Three different Butterfly-Gauss beams are proposed by introducing higher order Butterfly catastrophe to
the field of optics, where an autofocusing Butterfly-Gauss beam with a special profile is emphatically
studied and it can be regarded as the sum of two Half-Butterfly-Gauss beams. Based on the Collins inte-
gral formula, the autofocusing behavior, Poynting vector and angular momentum density of the corre-
sponding Butterfly-Gauss beams during propagation in free space, focus system and chiral medium are
investigated, respectively. The results show that the Butterfly-Gauss beam not only exhibits autofocusing
behavior similar to the Pearcey beams or circular Airy beams, but also presents rotation in analogy with
the Swallowtail beam during propagation in free space. In the focus system, the tail directions of special
patterns in the focal plane can be controlled by scaling lengths. In the chiral medium, the greater chirality
parameters correspond to the increasing of phase velocity of beam, which results in the fact that the dis-
tance of autofocusing plane becomes smaller, and it is easier to autofocus the beam. The proposed
Butterfly-Gauss beams have the application possibility in the field of manipulating microparticles along
intensity channels due to their special spatial structures in focal plane, where the Poynting vectors flow
from center spot to the controlled tail.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Much interest has been exhibited recently in some laser beams
with the catastrophe function from both theoretical aspects and
applications [1–7]. In general, the catastrophe function can be
described by seven elementary catastrophes, i.e. fold, cusp, swal-
lowtail, butterfly, hyperbolic umbilic, elliptic umbilic and parabolic
umbilic catastrophes, which obey the following equation [6,8]

Cnða1; a2; � � � ; an�1Þ ¼
Z 1

�1
exp½iPnða1; a2; � � � ; an�1;uÞ�du: ð1Þ

Here the canonical potential function

Pnða1; a2; � � � ; an�1;uÞ ¼ unþ1 þ
Xn�1

j¼1

aju j ð2Þ

with the integer n � 2. The canonical potential function Pn(a, u)
plays important role in dynamics propagation of the corresponding
beams. For example, for the case of n = 2 Eq. (1) corresponds to the
fold catastrophe, which is proportional to the well-known Airy
function. By introducing the Airy function into the field of optics

[1,2], the finite-energy Airy beam truncated by exponential decay-
ing presents many intriguing properties such as parabolic trajec-
tory, self-healing, nondiffraction, sorting microparticles and
electron acceleration [9–12]. For the cusp catastrophe of n = 3, the
Pearcey-Gauss beams exhibits the autofocusing, self-healing and
form-invariance during propagation [3]. Moreover, the half Pearcey
beams [4] and dual Pearcey beams [5] are studied by Kovalev et al.
and Ren et al., respectively. For n = 4, the Swallowtail-Gauss beam
shows the rotation of main-lobe and the potential applications in
manipulating microparticles, but which does not display autofocus-
ing behavior during propagation [7].

When n = 5, the Eq. (1) becomes the Butterfly catastrophe,
where we shall henceforth write it in the following form

Buða1; a2; a3; a4Þ ¼
Z 1

�1
exp½iðu6 þ a4u4 þ a3u3 þ a2u2 þ a1uÞ�du:

ð3Þ
Here the higher hierarchy Butterfly catastrophe contains four

control parameters, i.e., a1, a2, a3 and a4, and any two parameters
can be set as transverse spatial coordinates (x, y). Can the higher
optical catastrophe beams present the similar propagation dynam-
ics of the lower catastrophe beams such as the Airy, Pearcey and
Swallowtail beams? The motivation of the present paper is to
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study the autofocusing behavior, Poynting vector and angular
momentum density of the finite-energy Butterfly-Gauss (BuG)
beam passing through free space, focal system and chiral medium,
where two Half-Butterfly-Gauss beams are also dealt with. The
results obtained in this paper are different to the propagation-
invariance of Pearcey beams, which are also useful for studying
the autofocusing behavior and microparticles manipulation in spe-
cial spatial structures. The paper is organized as follows. Sections 2
gives analytical propagation expressions of three different BuG
beams, respectively, where an autofocusing BuG beam in the case
of (a1, a3) = (x/x0, y/y0) is emphatically studied. The evolution of the
Poynting vector and angular momentum density for the autofocus-
ing BuG beam propagation in different media is analyzed in
Sections 3 and 4, respectively, and the conclusions follow in
Section 5.

2. Three different Butterfly-Gauss beams

The Butterfly catastrophe possesses four control parameters
and any two parameters can be selected as the transverse spatial
coordinates in optics. In this section we mainly study the following
three different cases, i.e. (a1 = x/x0, a3 = y/y0), (a1 = x/x0, a2 = y/y0)
and (a2 = x/x0, a3 = y/y0).

2.1. A special type of autofocusing Butterfly-Gauss beams

Assume that the control parameters of the Butterfly catastrophe
in Eq. (3) are set as a1 = x/x0, a2 = 0, a3 = y/y0 and a4 = 0, respec-
tively. By introducing this catastrophe to optics, the initial field
of the Butterfly beam in the Cartesian coordinate system can be
written as [6,8]

Buðx=x0;0;y=y0;0Þ¼
Z 1

�1
exp i u6þ y

y0

� �
u3þ x

x0

� �
u

� �� �
du

¼HBu�ðx=x0;0;y=y0;0ÞþHBuþðx=x0;0;y=y0;0Þ;
ð4Þ

where x0 and y0 are scaling lengths along x- and y-axes, respec-
tively. The two Half-Butterfly catastrophe in Eq. (4) are given by

HBu�ðx=x0;0;y=y0;0Þ¼
Z 0

�1
exp i u6þ y

y0

� �
u3þ x

x0

� �
u

� �� �
du; ð5Þ

HBuþðx=x0;0;y=y0;0Þ¼
Z 1

0
exp i u6þ y

y0

� �
u3þ x

x0

� �
u

� �� �
du; ð6Þ

respectively. The integrals in Eqs. (4)–(6) can be calculated numer-
ically by using the contour integral method in complex u plane [13],
which make the integrand along the real axis rapid convergence
with no violent oscillation by transforming the variable u into
u0exp(ip/12) (see Figs. S1 and S2 of Supplemental materials).

The Fourier transform of the Butterfly beam in Eq. (4) can be
expressed as

~Buðkx;kyÞ¼ 1

ð2pÞ2
Z 1

�1

Z 1

�1
Buðx=x0;0;y=y0;0Þexp½�iðkxxþkyyÞ�dxdy

¼x0y0dðk3xx30�kyy0Þexpðik6x x60Þ;
ð7Þ

where kx and ky are the Fourier transform pairs, d denotes the Dirac
delta-function. Eq. (7) indicates that the amplitude of Fourier spec-
trum of the Butterfly beam is concentrated by d-lines with power
function kyy0 = kx

3x0
3, which is different to Gaussian distributions

of Airy beams [1] and parabolic curves of Pearcey beams [3].
Based on the Huygens-Fresnel diffraction integrals, the propa-

gating expression of the Butterfly beam in free space can be
obtained by

Buðx; y; zÞ ¼ k
i2pz

ZZ
1
Buðx1=x0;0; y1=y0;0Þ

exp
ik
2z

½ðx� x1Þ2 þ ðy� y1Þ2�
� �

dx1dy1

¼ ð1� z=zeÞ�
1
6Bu

x
x0

ð1� z=zeÞ�
1
6;� z

2kx20
ð1� z=zeÞ�

1
3;

 

y
y0

ð1� z=zeÞ�
1
2;0
�
; ð8Þ

where ze � 2ky02 and the wave number k = 2p/k with wavelength k.
Eq. (8) indicates that the beam’s shape changes with the evolution
of z due to the increasing of control parameters from two to three.
Furthermore, from Eq. (8) one can find that there is a singularity at
z = ze by view of mathematics, which leads to the fact that the cor-
responding Butterfly beam gradually approaches infinity with z?
ze. Similar to the Pearcey beam [3], the phenomenon can be consid-
ered as the autofocusing behavior owing to the existence of a real-
valued singularity in the z-axis. Fig. 1 shows the intensity evolution
in x- and y-directions of the Butterfly beam during propagation,
respectively. There is the autofocusing behavior with the autofocus-
ing plane of z = ze in y-direction as z increases, although the autofo-
cusing in the x-direction is not found.

On the other hand, the amplitude of Fourier spectrum of Butter-
fly beam is determined by Dirac d-function, which results in the
infinite energy of the pure Butterfly beam. In order to ensure the
finite energy in physical realization, a Butterfly-Gauss (BuG) beam
is proposed, namely, the initial field of Butterfly beam at z = 0 mod-
ulated by Gaussian factors, which retains the autofocusing behav-
ior while limiting its energy.

For the case of a1 = x/x0, a3 = y/y0, in a Cartesian coordinate
system the initial field of the BuG beam at z = 0 is expressed by

BuG1ðx; y; z ¼ 0Þ ¼ exp � x2 þ y2

w2
0

� �
Buðx=x0;0; y=y0;0Þ; ð9Þ

where w0 is the waist width of Gaussian factor and Bu(x/x0, 0, y/y0,
0) is defined by Eq. (4).

The Fourier spectrum of the BuG beams at z = 0 is also given by

~BuG1ðkx; kyÞ ¼ 1

ð2pÞ2
Z 1

�1

Z 1

�1
BuG1ðx; y; z ¼ 0Þ

exp½�iðkxxþ kyyÞ�dxdy
¼ H~BuG�ðkx; kyÞ þ H~BuGþðkx; kyÞ:

ð10Þ

Here the Fourier spectrums of two Half-Butterfly-Gauss beams
are given by

H~BuG�ðkx;kyÞ¼w4
0

4p
exp½�w2

0ðk2x þk2yÞ=4� 1þ iw2
0

4y20

 !�1
6

HBu�ða;b;c;0Þ;

ð11Þ
where the term of HBu±(a, b, c, 0) are determined by Eqs. (5) and (6)
with

a ¼ �iw2
0kx

2x0
1þ iw2

0

4y20

 !�1
6

;b ¼ iw2
0

4x20
1þ iw2

0

4y20

 !�1
3

;

c ¼ �iw2
0ky

2y0
1þ iw2

0

4y20

 !�1
2

: ð12Þ

From Eq. (11), one can see that the energy of the BuG beams is
obviously constrained by the Gaussian spectrum of

exp½�w2
0ðk2x þ k2yÞ=4�, and the term of HBu±(a, b, c, 0) modulate

both the amplitude and phase of the Fourier spectrums whilst
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