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$EVWUDFW: Sensitivity analysis is a means for extracting the cause and effect relationship 
between inputs and outputs in the network model. The paper p roposes the scheme of 
integrating column generation and penalization of capacity  constraints, to find a set of 
equilibrium path flow pattern of the capacitated network. The  solution of path flows 
becomes candidate flow patterns, from which we can abstr act extreme points specially 
used for sensitivity analysis, by using a linear progr amming. Numerical example shows 
the effect of change in input parameters on flow and delay.   &RS\ULJKW��������,)$& 
 
.H\ZRUGV: sensitivity; network; capacity; constraints; equilibr ium; 
  transportation; traffic control; Newton; linear pr ogramming.  

 
 
 
 

 
1. INTRODUCTION 

 
The network flow model attempts to duplicate the 
vehicular flows on the network, by partitioning the 
origin-destination trip rates between the observed 
paths. The sensitivity analysis is a method for 
extracting the cause and effect relationship between 
the inputs and outputs in the network flow model. 
The basic idea is that each input channel to the 
network is offset slightly and the corresponding 
change in the output is reported. For example, link 
time or origin-destination demand is likely to contain 
uncertainties because of the difficulty in obtaining 
accurate data; the input channels that produce high 
sensitivity values can be considered significant and 
can most often be paid attention in network design 
and traffic operation. 
 
The sensitivity of the deterministic user equilibrium 
(UE) was developed as that of a restricted variational 
inequality (Tobin and Friesz, 1988). The sensitivity 
in the context of the logit-based stochastic UE was 
addressed as a link-based approach (Ying and 
Miyagi, 2001), implemented in the sophisticated 
procedure of the Dial’s algorithm, and the sensitivity 
in the probit-based stochastic UE was explored on 
the basis of the information on the stochastic UE 
path flows (Clark and Watling, 2002). The sensitivity 
analysis of deterministic or stochastic UE has been 

applied for solving congestion pricing and network 
design problems (Yang 1997; Ying, 2005). 
 
The sensitivity of the deterministic UE requires a 
previous set of reference path flows, from which an 
extreme path flow pattern might be abstracted. 
Unfortunately, how to obtain the candidate path flow 
pattern is not solved. The traffic condition of 
deterministic UE is unique with link flows, but not 
unique with respect to path flows. A link flow pattern 
may correspond to several path flow patterns 
(Patriksson, 1994; Bar-Gera, 2002). Even when the 
link flow pattern is known, finding an equilibrium 
path flow is still not a trivial task. For a small 
network, all the paths could easily be enumerated as 
the reference set, but for a large network, path 
enumeration is unimaginable. 
�
The objective of this paper is to demonstrate a 
comprehensive methodology for investigating factor 
sensitivities of deterministic UE model over the 
capacitated network. We first present how to find a 
set of equilibrium path flow pattern by using the 
Newton method, a path-based algorithm, which 
integrates Newton formula and column generation; 
second, we illustrate how to abstract the extreme path 
flow pattern used for flow sensitivity analysis, by 
using a linear programming. The two problems play 
a significant role in the applying sensitivity analysis  
to traffic network practices. A numerical example is 
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finally demonstrated for the deterministic UE models 
over the capacitated network. 
 

2. PATH-FORMULATED NETWORK MODEL 
 
Given a transport network *($, 1), where $ and 1 
are the sets of links and nodes respectively, and each  
directed link D∈$ is associated with an increasing 
travel time WD([D) as an function of link flow [D. : is 
the set of origin destination pairs, and for each pair 
Z∈:, there is a given traffic demand TZ. The user 
equilibrium assignment problem in the capacitated 
network is formulated as follows:  
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where IN

Z denotes the flow on path k within OD pair 
Z, I=[�IN

Z], and .Z is the path set within OD pair Z. 
ca is the capacity of link D. GD in the bracket is the 
Lagrange multiplier of the corresponding equation 
(1G). GD is positive if the equation is active and zero 

otherwise. Z
DNδ =1 if link is in the path N; otherwise, 

Z
DNδ =0, $�= [ Z

DNδ ]. 
 
This problem becomes conventional UE assignment 
if dropping the link capacity constraints (1G). Since 
all path flow variables of interest are positive and the 
nonnegativity constraints (1H) are not binding, the 
nonnegativity in terms of path flows may be omitted 
in the following without affecting the assignment 
solution. The path set will only include those positive 
variables or say used paths through all the paper. The 
following Lagrange function will be used to build the 
necessary equation at optimality. 
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In terms of path flows, the derivative of the Lagrange 
function equals zero, so that, 
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Where, X is the vector of Lagrange multiplier with 

elements, }{min Z
DNDN

Z WX δ⋅= , the shortest path time 

within OD pair Z. τ is the time vector corresponding 
to the used paths, with elements, τZN= ΣDWD⋅δDN

Z. G� is 
the vector of the Lagrange multiplier of the equation 
(1G), G=[GD]. 
 
The solution of the capacitated network model has 
the characterization of a Wardrop principle when the 
travel time is articulated in terms of running time and 

waiting time. This generalized travel time is, in fact, 
the ordinary one to be minimized by the individual 
travellers in a congested network. The waiting time 
or queuing delay is equivalent to the Lagrange 
multiplier associated with the capacity constraint on 
the given link. Then equilibrium flow pattern and 
generalized time over the capacitated network can be 
obtained once the problem (1D)-(1H) is solved 
 

3. FINDING PATH FLOW PATTERN 
 
The path-based method is adopted for solving the 
path-formulated network flow model and finding the 
candidate path flow pattern. Column generation and 
line search are incorporated into the solution 
procedure. The column generation allows that the 
active paths joining each OD pair are generated 
endogenously only when needed. The convex line 
search is implemented to avoid the infeasibility of 
flows on the used paths and equilibrate the demand 
among the active paths as well as the newly founded 
shortest path for every OD pair. The Newton method 
(Cheng et al, 2003) is reported to be superior to the 
gradient projection (Bertsekas and Gallager, 1987) in 
the robustness of convergence. 
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Different from the optimization of the link-based 
algorithm, which is performed in the link-flow 
domain, the Newton method is performed in the 
path-flow domain. With respect to path flow vector 
only inclusive of used elements, the proposed method 
iteratively solves problem (1) from a feasible point to  
an improved feasible point. Provided a feasible point 
or say path flow vector f n, a moving flow ∆I n and a 
step size λ are determined such that the following 
two properties are true:  
• I�Q���λ⋅∆I�Q is feasible  
• I�Q���λ⋅∆I�Q�is better than that at I�Q 
This leads to a new point  
 

I�Q+1 = I Q + λ⋅∆I Q (4) 
 
The process above mentioned is repeated until the 
objective function cannot be further improved. In the 
space of path flows, the objective function ]([) in 
equation (1D) is approximated by the following 
second-order Taylor series: 
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where W(IQ), W
(IQ) denote the vectors of path costs and 
their derivatives, which are related to the first and 
second order derivatives of the objective function to 
the respective path flows. IQ is the vector of current 
path flow solutions. The minimizing is performed at 
the approximate function. The first derivative of the 
approximate function is: 
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