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a b s t r a c t

We investigate the topological interface modes of surface plasmon polaritons in a multilayer system com-
posed of graphene waveguide arrays. The topological interface modes emerge when two topologically
distinct graphene multilayer arrays are connected. In such multilayer system, the non-trivial topological
interface modes and trivial modes coexist. By tuning the configuration of the graphene multilayer arrays,
the associated non-trivial interface modes present robust against structural disorder. The total number of
topological modes is related to that of graphene layers in a unit cell of the graphene multilayer array. The
results provide a new paradigm for topologically protected plasmonics in the graphene multilayer arrays.
The study suggests a promising approach to realize light transport and optical switching on a deep-
subwavelength scale.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

As many recent prominent discoveries in physics such as quan-
tum Hall effect [1–3], topological superconductors [4], and topologi-
cal insulators [5–7], the nontrivial topological properties of matter
play the crucial role and have attracted intense attention. So far sim-
ilar concepts have been analogized to the field of optics [8,9] and
acoustics [10]. The nontrivial topological effects have been demon-
strated across a variety of optical systems including metallic-
dielectric waveguides [11] and photonic crystals [12]. A paradigm
of topological structure is the famous Su-Schrieffer-Heeger (SSH)
model [13,14], in which the topological interface modes emerge at
the interface between topological trivial and non-trivial structures
with distinct topological invariants [8]. Generally, the winding num-
ber can be regard as the topological invariant and is used to charac-
terize the topological properties of the SSH model and the other one-
dimensional structures [15]. According to the ratio between intra-
and inter-cell couplings, the winding number is either zero or unity
separated by the Dirac point. Such SSH model can be realized in
many optical systems, including dimerized dielectric waveguides
[16], nanoparticles [17], and metallic nanodisks [18].

Recently, the topological nontrivial modes associated with the
SSH model have been investigated in graphene waveguide system
[19,20]. Graphene can support surface plasmon polaritons (SPPs) in

a wide range of spectrum from terahertz to infrared frequencies
[21–23]. The SPPs in graphene can be flexibly tuned by gate voltage
and chemical doping [24–27], which also exhibit relatively low
propagation loss and strong field confinement [28–30]. These
properties enable graphene a promising platform to study topolog-
ically nontrivial SPP modes.

In this work, we generalize the traditional SSH model from
dimerized waveguide array to graphene multilayer arrays (GMAs),
which can also constitute a hyperbolic metamaterial for applica-
tion in negative refraction and transformation optics [31,32]. Here
the topologically nontrivial modes may emerge at the interface
between two GMAs with distinct topological invariants, which is
characterized by the binary winding number of the bulk bands.
Meanwhile, the trivial interface modes coexist at the interface,
leading to beat between the trivial and nontrivial modes. The topo-
logical interface modes of SPPs are also found to be robust against
the perturbations of the structure. The dependence of the total
number of topological modes on that of graphene layers in each
unit cell of GMAs is also discussed in detail.

2. Concept and theory

We start by investing the Bloch modes in the period GMAs. As
shown in Fig. 1, each graphene sheet can support TM polarized
SPP mode that propagates along z direction. By applying the
tight-binding approximation [33], we can obtain the coupled-
mode equation for the mode amplitude
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where bg is the propagation constant of SPPs in a single layer
graphene. Cn,n+1 is the coupling coefficient between the nth and
(n + 1)th graphene sheets. According to Bloch theorem [34,35], the
mode amplitude in the nth graphene at the position xn is

anðzÞ ¼ un expðikxxnÞ expðibzÞ; ð2Þ

where b and kx are the propagation constant and Bloch wave vector.
un = un+N is the period-in-cell part of the Bloch mode. The band
structure b(kx) can thus be obtained from the Eqs. (1) and (2). Since
there exists N layers of graphene in each period, the GMAs can sup-

port N Bloch bands [25]. For each Bloch band m, the topological
invariant is the winding number, which is defined as [36,37]
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with the period function given by

um;kx ðxÞ ¼
XN
n¼1

sgnðx� xnÞun expð�jjx� xnjÞ: ð4Þ

where j = (bg � edk02)1/2 and bg = k0[ed � (2ed/g0rg)2]1/2 are the
decay constant and propagation constant of SPPs in a single layer
graphene. rg is the surface conductivity of graphene, which can
be modeled by the Kubo formula [38,39]. k0 = 2p/k is the wave
number in air with g0 being the corresponding air impedance. The
coupling coefficient can be derived as Cn,n+1 = (b0 � bp)/4 with b0
and bp being the propagation constants of Bloch modes in mono-
layer graphene array as kx = 0 and p/D, respectively. It should be
mentioned that the coupling coefficient Cn,n+1 can be tuned by the
intra-cell spacing of d1 and inter-cell spacing of d2, which will basi-
cally determine the topological property of the GMAs.

Fig. 2(a) and (b) show the band structures of the Bloch modes
for different inter-cell spacing d2 as the fixed intra-cell spacing of
d1 = 40 nm. We choose N = 3, thus there are three Bloch bands.
As d2 increases from d2 < d1 to d2 > d1, the band gaps close and then
reopen, indicating the emergence of a band inversion. Specially as
d2 = d1 shown in Fig. 2(c), the band gaps vanish with the Dirac
points emerging at Brillouin zone center between band 2 and 3
and Brillouin zone edge between band 1 and 2, respectively
[40,41]. The GMAs thus experience a topological phase transition
at the Dirac points.

Fig. 1. Schematic of the periodic GMAs. In each unit cell, there are N graphene
sheets. The spatial period is D = (N � 1)d1 + d2 with d1 and d2 being the spacing of
the intra-cell within a unit and the inter-cell between adjacent unit, respectively. rg

is the surface conductivity of graphene, and ed is the relative permittivity of the
dielectric medium between graphene.

Fig. 2. Diffraction relation of SPPs and topological invariant in the GMAs with parameters given by N = 3, d1 = 40 nm, ed = 2.13, k = 10 lm, lc = 0.15 eV, and s = 0.5 ps at room
temperature. (a) Real and (b) imaginary parts of diffraction relation as the inter-cell spacing d2 is varying. (c) Band structures of Bloch modes as d2 = d1 = 40 nm. (d) Real part
of winding numbers for band m = 3 as the inter-cell spacing d2 is varying.
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