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a b s t r a c t

Computational intelligence (CI) involves using a computer algorithm to capture hidden knowledge from
data and to use them for training ‘‘intelligent machine” to make complex decisions without human
intervention. As simulation is becoming more prevalent from design and planning to manufacturing
and operations, laser material processing can also benefit from computer generating knowledge through
soft computing.
This work is a review of the state-of-the-art on the methodology and applications of CI in laser mate-

rials processing (LMP), which is nowadays receiving increasing interest from world class manufacturers
and 4.0 industry. The focus is on the methods that have been proven effective and robust in solving
several problems in welding, cutting, drilling, surface treating and additive manufacturing using the laser
beam.
After a basic description of the most common computational intelligences employed in manufacturing,

four sections, namely, laser joining, machining, surface, and additive covered the most recent applications
in the already extensive literature regarding the CI in LMP. Eventually, emerging trends and future
challenges were identified and discussed.
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1. Lasers in manufacturing processes

Since the early industrial applications, which have focused on
processes such as welding, machining, and heat treatment, the
laser materials processing has evolved and included laser forming,
shock peening, laser additive fabrication, micromachining, and

nanoprocessing [1]. New opportunities for the application of lasers
in materials processing have been following the development of
new high-power laser sources with new wavelengths such as
semiconductor lasers (800–1000 nm), Neodymium doped YAG
(Nd: YAG) lasers (1064 nm) and Excimer (126–351 nm). The laser
power increases steadily whereas the power consumption of laser
systems decreases. The ability to move the laser focus very quick
over the work piece surface has improved the performance and
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accuracy and many laser manufacturing processes have been
improved (e.g. laser-welding, forming, hardening, prototyping,
lithography) [2]. Therefore, lasers have proved to be versatile and
have reached a growing success among the world class
manufacturers.

All laser material processing operations can be controlled by an
appropriate combination of power density and interaction time.
Those processes are divided into three major classes, namely, heat-
ing without melting or vaporizing like in surface hardening, melt-
ing without vaporizing like in cladding and vaporizing like in
cutting [3]. Many process parameters play major roles in design
and realization of a laser manufactured product. The working con-
ditions can affect the laser machine performance, the beam stabil-
ity, and the operation precision and repeatability. Given the
complexity of handling the laser material interaction in an indus-
trial site, the computer has gained a leading position in conduction,
correction, and optimization of every laser application to manufac-
turing. Soft computing is becoming the leading tool for engineering
systems handling. In the case of laser systems, it can be exploited
for the selection of process parameters and monitoring that are
required to achieve the desired results in terms of processing
speed, efficiency, quality and reproducibility.

Computational intelligence represents a large growing slice of
soft computing techniques. They are consolidated tools for model-
ing, characterization, and forecasting in material engineering [4].
The most used but not limited-to CIs are artificial neural network
(ANN), genetic algorithm (GA), fuzzy logic (FL), metaheuristic
methods. They are highly result oriented, smarter, useful and less
expensive than conventional computational techniques.

They can help solving out problems entangled with process
investigation, modeling, optimization, and control, also in collabo-
ration with statistics, numerical and analytical tools. Among
numerical methods, Finite element method (FEM) is one of the
most popular methods in solving partial differential equations
(PDEs) governing domains with irregular geometries. While highly
accurate, FEM can be computationally slow when applied to com-
plex problems like laser materials interaction. The application of
existing models of computation from the artificial intelligence
community, however, can greatly simplify program development,
ease the burden of maintenance, and result in a more robust sys-
tem. There are several applications in the field of manufacturing
that demonstrate the synergy between the two numerical tech-
niques [5–7].

Statistical approach is a general term governing the application
of a statistical model in the selected field in which it revolves a
probability distribution built to facilitate deductions made from
available data. A basic statistical approach is based on the design
of experiment [8]. Hybrid CI-statistics design strategy for the

determination of the optimum laser parameters which simultane-
ously meets the requirements for several quality characteristics
can be determined. The optimal parameter settings that yield the
maximal synthetic performance measure can be determined [9].

The applications covered in this paper group into four sections,
namely, laser joining, laser machining and micromachining, laser
surfacing engineering, and laser prototyping and additive. Besides
briefly discussing the scope and principle of these processes, each
section gives a picture of the most recent references related with
the application of CI to laser materials processing (LMP).

Finally, the emerging trends and future challenges in the appli-
cation of CI simulation to LMP were identified and discussed.

2. Computational intelligence (CI)

The use of computers for better understanding and interpreta-
tion of processes is spread through human activities so are the
computational intelligences. This paragraph provides a brief
description of the computational intelligences that were used in
the laser materials processing that are collected in this paper.
Those CI are just a part of the large world of available intelligent
algorithms. However, it is reasonable to limit the survey to artifi-
cial neural networks, fuzzy logic and adaptive neuro-fuzzy (ANF),
metaheuristic techniques.

2.1. Artificial neural networks

Artificial neural networks (ANN) are the most popular artificial
learning tool in computer science and other research disciplines.
These systems are self-learning and trained, rather than explicitly
programmed, and excel in areas where the solution or feature
detection is difficult to express in a traditional computer program.

They act like a biological brain whose basic unit is the neuron.
Each neural unit links many others, and it can enhance or inhibit
the activation state of adjoining neural units. Each individual neu-
ral unit computes using summation function (R) the weighted (w)
signal (x) coming from the unit ahead. There may be a threshold
function or limiting function on each connection and on the unit
(bias) such that the signal must surpass the limit before propagat-
ing to other neurons (y) (Fig. 1).

The computational neural units are stored in layers so the signal
path traverses from the first (input), to the last (output) layer of
neural units. Neural networks typically consist of multiple layers
and the signal path traverses from the first (input), to the last (out-
put) layer of neural units (Fig. 2).

The weights (ws) of classical neural network are calculated dur-
ing the training phase. In that phase a forward stimulus, which can
be the process parameters, is elaborated from the input layer and

Fig. 1. Biological neurons representation (left) and mathematical model (right).
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