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a b s t r a c t

A simple method is proposed for determining the mode coupling coefficient D in graded index multimode
optical fibers. It only requires observation of the output modal power distribution P(m, z) for one fiber
length z as the Gaussian launching modal power distribution changes, with the Gaussian input light dis-
tribution centered along the graded index optical fiber axis (h0 = 0) without radial offset (r0 = 0). A similar
method we previously proposed for calculating the coupling coefficient D in a step-index multimode
optical fibers where the output angular power distributions P(h, z) for one fiber length z with the
Gaussian input light distribution launched centrally along the step-index optical fiber axis (h0 = 0) is
needed to be known.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Transmission characteristics of multimode step-index (SI) and
graded-index (GI) optical fibers depend strongly upon the differen-
tial mode-attenuation [1–4] and rate of mode coupling [2,3,5–7].
The latter represents power transfer between neighboring modes
caused by fiber impurities and inhomogeneities introduced during
the fiber manufacturing process (such as microscopic bends, irreg-
ularity of the core-cladding boundary and refractive index distribu-
tion fluctuations) [6]. Modal dispersion in GI optical fibers is
reduced by the graded-index distribution of the core and by mode
coupling which leads to a square-root dependence of the band-
width on the fiber length instead of the linear dependence
expected in the absence of mode coupling [7,8]. Because of the
influence of mode coupling and modal attenuation on fiber trans-
mission, it is necessary to have effective and accurate methods
for calculating the rate of these processes in GI optical fibers.

Output power distribution in the near and far fields of GI optical
fibers has been studied extensively. Time-independent power flow
equation is employed to calculate modal power transients along
the GI optical fibers [8]. Time-dependent power flow equation is
employed to calculate frequency response and bandwidth in GI
optical fibers [9,10]. Arrue et al. [11] used ray tracing method

and also experimentally investigated mode coupling to predict
output-field patterns in GI plastic optical fibers (POFs). Garito
et al. [12] experimentally investigated influence of mode coupling
on pulse broadening in GI POFs. Inoue et al. [13] have investigated
experimentally and by solving the coupled power equation the
influence of microscopic heterogeneities on mode coupling and
bandwidth in GI POFs.

The rate of mode coupling in GI optical fibers, which is the
power transfer betweenmodes, has been described by the constant
‘‘coupling coefficient” D [14]. A more general form of the power
flow equation has been used in which this coefficient depended
on the principal mode number [8]. The method of determining
the mode dependent coupling coefficient in GI optical fibers pro-
posed by Kitayama et al. [8] required that the steady-state power
distribution and total loss in a steady-state be known.

An alternative method is presented in this paper. The coupling
coefficient D is obtained from just one output modal power distri-
bution. This distribution is for the Gaussian light beam distribution
launched centrally along the fiber axis (h0 = 0) without radial offset
(r0 = 0), at selected distance z from the input fiber end. The vari-
ance of the launch modal power distribution has to be known,
which is usually the case. Should it not be known, variances of
the output modal power distributions at two fiber lengths z > 0
have to be known. The condition of the launching the beam with-
out radial offset (r0 = 0) is crucial, since in the case of radial offset
r0 > 0 (although h0 = 0�), excitation of modes with m > 0 occurs,
which results in an initial distribution P(m, z = 0) which is in the
ring form (disk form of a launch beam distribution P(m, z = 0) is
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a crucial condition of the proposed method). Of course, a finite
radial dimension of the launch beam spot size is common, but it
can be easily reduced to be of order of a few micrometers [15].

2. Time-independent power flow equation for GI optical fiber

The index profile of GI optical fibers may be expressed as:

nðr; kÞ ¼ n1ðkÞ 1� 2DðkÞ r
a
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where g is the core index exponent, a is the core radius, n1 is themax-
imum index of the core, n2 is the index of the cladding and
D ffi ½n1ðkÞ � n2ðkÞ�=n1ðkÞ is the relative index difference. The opti-
mum value of the core index exponent g to obtain maximum band-
width depends on the wavelength k (in free-space) of the source
[11,16].

Time-independent power flow equation for GI optical fiber is
[8,17]:
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where P(m, z) is the power in the m-the principal mode (modal
group), z is coordinate along the fiber axis from the input fiber
end, a(m) is the attenuation of the mode m, d(m) is the coupling
coefficient of the mode m. The maximum principal mode number
M, can be obtained as [8,10]:
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
gDðkÞ
g þ 2
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where k ¼ 2p=k. The boundary conditions for the power flow
described by Eq. (2) are: P(m, z) = 0, for m >M and

dðmÞ@Pðm;zÞ
@m

���
m¼0

¼ 0 for m = 0. The first condition implies that modes

with infinitely high loss do not transmit power. The second one
indicates that the coupling is limited to the modes m > 0.

Except near cutoff, the attenuation remains uniform a(m) = a0
throughout the region of guided modes 0 �m � M (it appears in
the solution as the multiplication factor exp(�a0 z) that also does
not depend on m). Therefore, a(m) can be neglected when solving
(2) for mode coupling, and this equation reduces to:
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It is assumed that mode coupling mainly occurs between neigh-
boring modes due to the fact that coupling strength decreases suf-
ficiently fast with the mode spacing. This assumption is commonly
used in modeling a mode coupling process [3,12,14]. Assuming a
constant mode coupling coefficient d(m) = D, time-independent
power flow Eq. (4) can be written as:
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Thefirst termof the right-handsideof Eq. (5) describes thedrift of
modal power distribution P(m, z) towards m = 0, while the second
term describes the change of the width of the launch modal power
distribution with increasing the fiber length. When the narrow
Gaussian inputmodalpowerdistributionat the inputendof thefiber
is launchedcentrallyalong thefiber axis (h0 = 0)without radial offset
(r0 = 0) (it is already centered at m = 0), with increasing distance
from the input fiber end, themodal power distribution remains cen-
tered atm = 0, but its width increases, and Eq. (5) reduces to:

@Pðm; zÞ
@z

¼ D
@P2ðm; zÞ

@m2 ð6Þ

If we think of P(m, z) as a probability distribution, Eq. (6) is then
seen as the special Fokker-Planck equation with constant diffusion
coefficient D [18,19]. The solution of the Eq. (6) is [18,19]:
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The variance r2
z of the output modal power distribution (7) at

the fiber length z, can be calculated as:

r2
z ¼ r2

z¼0 þ 2Dz ð8Þ

where r2
z¼0 is the variance of the launch modal power distribution.

Coupling coefficient D from Eq. (8) is:

D ¼ r2
z � r2

z¼0

2z
ð9Þ

In order to determine the coupling coefficient D, one needs to
determine the variance r2

z of the output modal power distribution
P(m, z) at an arbitrary length z along the fiber (the variance of the
Gaussian launch modal power distribution r2

z¼0 has to be known).
If the variance of the Gaussian launch beam distribution r2

z¼0 is
not known, coupling coefficient D can be determined using the fol-
lowing relation:

D ¼ r2
z2
� r2

z1
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where r2
z1
and r2

z2
are variances of the output modal power distribu-

tion P(m, z1) and P(m, z2) measured at the fiber lengths z1 > 0 and
z2 > 0, respectively (z2 > z1). It is interesting to note that in our pre-
vious work [19] the same form of Eqs. (9) and (10) is proposed for
calculating the coupling coefficient D in SI multimode optical fibers
where the output angular power distributions P(h, z) for one fiber
length z with the known Gaussian form of the input light launched
centrally along the fiber axis (h0 = 0) is needed to be known.

3. Verification of the method

We applied our method to the GI glass optical fiber investigated
in a previously reported work [14]. Fig. 1a shows the normalized
modal power distributions at three fiber lengths z = 0 m, 1000 m
and 1 for light beam with Gaussian distribution launched
centrally (h0 = 0�) along the fiber axis without radial offset

Fig. 1a. Normalized output modal power distribution P(m, z) calculated by solving
the time-independent power flow Eq. (2) at different fiber lengths z = 0 m (h),
1000 m (s) and 1 (D) [14].
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