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a b s t r a c t

The explicit closed-form expressions for the beam width and angular spread of multi-Gaussian Schell-
model vortex (MGSMV) beams propagating through atmospheric turbulence are derived in this paper.
The spreading and evolution behavior of coherent vortices of MGSMV beams in non-Kolmogorov tur-
bulence are investigated quantitatively by some typical numerical examples, where the evolution be-
havior of coherent vortices is stressed in particular. It is illustrated that MGSMV beams are more resistant
to atmospheric turbulence than multi-Gaussian Schell-model (MGSM) non-vortex beams. By increasing
the beam index of MGSMV beams, the deleterious turbulence effects can be reduced gradually. As
MGSMV beams propagate in non-Kolmogorov turbulence, the position and number of coherent vortices
are changeable. The impact of the beam index and fluctuations of atmospheric turbulence on the con-
servation distance of the topological charge is also explored in depth.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few decades, lots of work has been done both
theoretically and experimentally to investigate the propagation
properties of partially coherent beams (PCBs) in free space and
turbulent atmosphere, due to their resistance to the deleterious
effects of atmospheric turbulence and potential applications in
free-space optical (FSO) communications, remote sensing, laser
radar systems, optical imaging, second-harmonic generation, par-
ticle trapping, etc [1–13]. In most cases, however, the research on
propagation of PCBs is based on the conventional spatial correla-
tion functions (i.e., Gaussian correlated Schell-model functions)
owing to the lack of other available mathematical forms of spatial
correlation functions for optical fields.

Since Gori and his collaborators established a sufficient condi-
tion for devising genuine spatial correlations based on the theory
of reproducing kernel Hilbert spaces [14,15], many different kinds
of PCBs with non-conventional spatial correlation functions are
introduced, such as the non-uniformly correlated (NUC) beam [16],
multi-Gaussian Schell-model (MGSM) beam [17], Laguerre-Gaus-
sian Schell-model (LGSM) and Bessel-Gaussian Schell-model
(BGSM) beam [18]. It was demonstrated that these PCBs with non-
conventional spatial correlation functions have some remarkable

characteristics on propagation through free space, such as the
peculiar self-focusing effect and a laterally shifted intensity max-
ima [16], far fields with flat-topped intensity profiles [17], and far
fields with ring-shaped intensity distributions [18].

In recent years, optical beams carrying phase singularities (i.e.,
optical vortex beams) have attracted much attention because of
their various applications ranging from being used as optical
tweezers and spanners [19,20] to being employed as information
carriers in FSO communications [21,22], and the related research
forms a significant subfield of optics, known as singular optics
[23]. The properties of partially coherent vortex beams with con-
ventional spatial correlation functions propagating through ran-
dom media have been discussed in some previous literatures, and
the partially coherent vortex beams are shown to be less sensitive
to atmospheric turbulence than partially coherent non-vortex
beams [24–34]. Lately, the multi-Gaussian Schell-model vortex
(MGSMV) beam was introduced by Zhang et al. as a natural ex-
tension of the aforementioned MGSM beam, and its focusing
properties were studied in [35]. Accordingly, Tang et al. in-
vestigated the propagation characteristics of MGSMV beams in
isotropic random media, and derived the analytical formulae for
the cross-spectral density function and mean-squared beam width
of MGSMV beams [36]. As far as we know, however, the spreading
and evolution behavior of coherent vortices of MGSMV beams
propagating through turbulent atmosphere has not been discussed
till now.

This paper is devoted to study the spreading and evolution
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behavior of coherent vortices of the MGSMV beam in non-Kol-
mogorov turbulence. Based on the extended Huygens-Fresnel
principle and the paraxial approximation, the explicit analytical
expressions for the spectral degree of coherence, normalized root
mean square (rms) beam width and angular spread of the MGSMV
beam with topological charge = ±l 1 in atmospheric turbulence
are obtained in Section 2. The spreading and the evolution beha-
vior of coherent vortices of the MGSMV beam in non-Kolmogorov
turbulence are illustrated and analyzed by a set of numerical ex-
amples in Section 3. Finally, the concluding remarks are given in
Section 4.

2. Theoretical model

In the Cartesian coordinate system, the field of a vortex beam at
the source plane z¼0 can be expressed as [37]

( )( ) = ( ) + ( )⎡⎣ ⎤⎦U u r i l rr r, 0 sgn 1x y
l

where ( )≡ r rr ,x y denotes the arbitrary transverse position vector
at the source plane z¼0, ( )u r represents the profile of the back-
ground beam envelope, ( ·)sgn is the sign function, and l specifies
the topological charge, also named as spiral number.

The MGSMV beam can be acquired by setting a MGSM beam as
the background beam. In what follows, we consider a MGSMV
beam at the source plane z¼0 propagating into the half-space

>z 0 where the turbulent atmosphere exits, and the possible de-
pendence of all field statistics on the angular frequency ω is im-
plied but omitted for brevity.

The second-order statistical properties of a partially coherent
beam can be characterized by the cross-spectral density (CSD)
function. The CSD of a MGSMV beam at the source plane z¼0 can
be written as [35]
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where ( )≡ r rr ,x y1 1 1 and ( )≡ r rr ,x y2 2 2 denote two arbitrary trans-
verse position vectors at the source plane z¼0,
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is the normalization factor with M being the

beam index, ( )M
m

stands for binomial coefficients, s and δ is the

waist width and spatial correlation width of the MGSMV beam,
respectively. It can be clearly seen from Eq. (2) that the MGSMV
beam can degenerate into a Gaussian Schell-model vortex (GSMV)
beam under the condition of M¼1 and into a classic Gaussian
Schell-model (GSM) non-vortex beam when M¼1 and l¼0. For
simplicity, the topological charge l is assumed to be 71 in the
following.

Within the validity of the paraxial approximation and based on
the extended Huygens-Fresnel principle, the CSD of the MGSMV
beam propagating through turbulent atmosphere at the z plane
can be obtained by [10,26,32]
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where ( )ρ ρ ρ≡ ,x y1 1 1 and ( )ρ ρ ρ≡ ,x y2 2 2 denote two arbitrary

transverse position vectors at the z plane, perpendicular to the
direction of propagation of the beam, π λ=k 2 / is the wave number
with λ being the wavelength of the source, · represents the
average over the ensemble, the asterisk specifies the complex
conjugate, and the expression in the angular brackets with sub-
script R is the complex phase correlation of a spherical wave
propagating in the turbulent medium. The phase correlation term
describing the influence of atmospheric turbulence can be well
approximated by [28,38,39]
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with ( )κΦn is the one-dimensional spatial power spectrum of the
refractive-index fluctuations of atmospheric turbulence, and κ is
the scalar spatial wave number.

In order to cover a wide scope of atmospheric conditions, our
discussion on the propagation of the MGSMV beam is based on a
generalized power spectrum model introduced by Toselli et al. in
[40], which is valid in non-Kolmogorov turbulence
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2
is the generalized refractive-index structure

constant with units α−m3 , κ π= L2 /0 0, ( )κ α= c l/m 0, with L0 and l0

being the outer and inner scales of atmospheric turbulence, re-
spectively, and
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with ( )Γ · being the Gamma function. On setting α = 11/3,

( )α =A 0.033, ˜ =C Cn n
2 2, → ∞L0 and →l 00 , the generalized power

spectrum reduces to the conventional Kolmogorov spectrum.
By use of the power spectrum in Eq. (6), the integral in Eq. (5)

becomes [11,28,36,39]
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where ( )μ κ α κ= + −2 2 m0
2 2 and ( )Γ · ·, denotes the incomplete

Gamma function.
Introducing two variables of integration, namely the center of

gravity and difference vectors

= + = − ( )r
r r

r r r
2

, 10s d
1 2

1 2

and substituting Eqs. (2) and (4) into Eq. (3), one obtains
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