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a b s t r a c t

In this paper, new fractional matrix generation by using different the periodic matrix sequences are
considered. For a periodic matrix with period P, its integer forms and fractional forms can constitute
different periodic matrix sequences. The series of the periodic matrix sequence can be used to compute
and construct different fractional matrices, which is depended on the relationship between the period
and the size of the periodic matrix sequence. The proposed fractional matrix generation method is
general and can be used to any periodic matrices. Then, we extend the new fractional matrices to multi-
order forms, which can be used in image encryption. Simulation results and the application example in
image encryption using the obtained new fractional matrix are also presented.
& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

As the generalization of a conventional Fourier transform, the
fractional Fourier transform (FRFT) was originally introduced in
1980 by Namias as a mathematical tool for solving theoretical
physical problems [1], but did not gain much attention until its
reintroduction to optics in 1993 by Mendlovic and Ozaktas [2–4]
and Lohmann [5]. Since then a lot of work has been done on its
properties and optics implementations [6–9], and it has been
widely studied and advances into application areas, such as beam
shaping, signal processing and image processing [10–19].

Due to the fact that the FRFT is a useful tool in solving problems
in the above areas, the discrete FRFT (DFRFT) has become an
important issue recently. In [20], Pei et al. defined the DFRFT based
on the eigendecomposition of the DFT matrix F where the
eigenvectors are Hermite–Gaussian-like functions. In [21], Candan
et al. consolidated and provided discussions on this definition of
the DFRFT. In [22–24], Hanna et al. considered the generation of
Hermite–Gaussian-like eigenvectors of F using the singular value
decomposition and direct batch evaluation to obtain the DFRFT.
Other F-commuting matrices whose eigenvectors are better
approximate the continuous Hermite–Gaussian functions are
introduced in [25–28]. In [29], Yeh and Pei developed a novel
method to compute the DFRFT, by which the DFRFT of any order
(angle) can be computed by a linear combination of the DFRFTs
with special orders. Following Yeh and Pei’s work, we have

investigated properties and generalized aspects about a linear
summation of fractional matrices [30].

In fact, the linear summation of a fractional matrix sequence
implies a construction method for new fractional matrices. In this
paper, we explore this method systematically and obtain some
interesting properties of the periodic matrix sequence. We firstly
present the physical meaning of the rotational angle for fractional
matrices. Then, we derive some new fractional matrices by the
series of different periodic matrix sequences, including some
typical periodic matrices used in signal processing. Some simula-
tions of new fractional matrices and an application of image
encryption using these new fractional matrices are presented.

2. Preliminaries

2.1. The continuous FRFT

The continuous FRFT of a signal xðtÞ with angle α is defined as
[8,9]

XαðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j cot α

p
�

Z 1

�1
xðtÞejπðt2 þu2Þcot α� j2πutcscαdt: ð1Þ

The transform angle α¼ a� π=2 indicates the rotation angle in
the time–frequency plane. Obviously, the FRFT reduces to the
identity transform and the conventional Fourier transform (FT) for
α¼ 0 and α¼ π=2, respectively. The fundamental property of the
FRFT is the angle additivity property, i.e., two successive FRFTs
with angles α and η is another FRFT with angle αþη, and
consequently the inverse FRFT is given by the FRFT with angle �α.
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2.2. The definition of DFRFT

The ath-order N�N DFRFT kernel defined through the eigen-
decomposition method is [20,21]

Fa ¼VDaVT ¼ ∑
N�2

k ¼ 0
e� jπ2 kavkvT

kþe� jπ2 MavkvTk ð2Þ

where V¼ v0jv1j⋯vN�2jvN�1½ �, M¼N�1 when N is odd and
V¼ v0jv1j⋯vN�2jvN½ �, M¼N when N is even, and vk is the kth
Hermite–Gaussian-like eigenvector. Da is a diagonal matrix with
diagonal entries corresponding to the eigenvalues for column
eigenvectors in matrix V.

2.3. Linear summation of fractional matrices

When we compute the DFRFT based on the eigendecomposi-
tion method, the transform kernel needs to be recomputed while
the transform order is changed. This computation cost is very large
in practical situation of the DFRFT computation with multiple
orders such as signal detection and estimation, noise filtering, and
pattern recognition. In [29], a new computation method for the
eigendecomposition-based DFRFT is developed. The ath-order N �
N DFRFT matrix Fa can be computed as Fa ¼∑N�1

n ¼ 0Bn;aFnb where
b¼ 4=N. The weighting coefficients are computed as Bn;a ¼ ð1=NÞ
ð1�ej�N�ðπ=2Þðnb�aÞÞ=ð1�ej�ðπ=2Þðnb�aÞÞ. With this method, the DFRFT
of any order can be computed by a linear combination of the
DFRFTs with special orders.

In fact, this computation method for the DFRFT implies the idea
of linear summation of multiple fractional matrices. Note that the
sizes and the periods of these matrices are equal. In [30], the linear
summation of fractional matrices is generated to any diagonaliz-
able periodic matrix.

Proposition 1. Assume that L is a N� N periodic matrix satisfying

LP ¼ I and its diagonalized form is L¼VDVH . Then, the matrix
La ¼ VDaVH and the matrix LaS ¼∑P�1

n ¼ 0Cn;aLn are equal when N¼ P,
where the coefficients are given by Cn;a ¼ ð1=PÞð1�ej2πðn�aÞÞ=
ð1�ejð2π=PÞðn�aÞÞ.

Proposition 2. Assume that L is a N� N periodic matrix satisfying
LP ¼ I and its diagonalized form is L¼VDVH . Let b¼ P=N and

K¼ Lb ¼ LP=N ¼VDP=NVH . Then, La can be expressed as

La ¼Ka=b
S ¼∑N�1

n ¼ 0Cn;a=bK
n.

Proofs of Propositions 1 and 2 can be referred in [30].
In Proposition 1, the size and the period of the periodic matrix L

are equal, i.e., N¼ P. In this case we can use the linear summation
∑P�1

n ¼ 0Cn;aLn to compute La. Specially, for any vector x whose
length is 4, we have Fax¼∑3

n ¼ 0Cn;aFnx. For the case that NaP,
we denote the matrix K¼ LP=N ¼VDP=NVH as is shown in Proposi-
tion 2. Then we have KN ¼ I which has the property that the size

and the period of the constructed matrix K¼ LP=N are equal.
Therefore, we can compute La as ∑N�1

n ¼ 0Cn;a=bK
n.

3. New fractional matrix generation by periodic matrix
sequences and its applications in image encryption

3.1. Order and angle parameters representation for fractional
periodic matrices in the time–frequency plane

The Fourier transform of a signal can be viewed as a counter-
clockwise rotation by an angle of π=2 in the time–frequency plane,
and the FRFT corresponds to a rotation by an angle α [8,9]. Similar
to the continuous case, the DFT and the DFRFT can be regarded as a
π=2 and an α rotation for the discrete signal, respectively. There-
fore, the DFT matrix F and the DFRFT matrix Fa can be described
both by their orders and rotational angles equivalently, where the
rotation angle α and the order a of the transform matrix have a
relation α¼ a� π=2.

For the FRFT, it has the following important properties: (1)
marginal property, i.e., reduction to the FT and identity operator
when a¼ 1 and a¼ 0, respectively; (2) additivity property, i.e.,
FaFb ¼ Faþb. Moreover, the Wigner distribution of the FRFTed
signal with angle α¼ a� π=2 is a counterclockwise rotated version
of the Wigner distribution of the original signal by the same
angle in the time–frequency plane. That is WXα

ðt; f Þ ¼
Wxðt cos α� f sin α; t sin αþ f cos αÞ where WXα

ðt; f Þ and
Wxðt; f Þ denotes the Wigner distributions of the FRFTed signal Xα

and the original signal x, respectively. These important properties
confirm the view of the FRFT as a rotation of the signal in the
time–frequency plane.

Besides the DFRFT, fractional version of other signal transforms
based on eigendecomposition method and these applications are
proposed and discussed, such as the discrete cosine transform
(DCT), the discrete sine transform (DST), and the discrete Hartley
transform (DHT) [31–36]. Unlike the FRFT, these fractional trans-
forms cannot be viewed as the rotation of the signal in the time–
frequency plane. However, since these fractional transforms satisfy
the additivity property and marginal property, these fractional
transforms are viewed as the “fractional” versions of the original
transforms and use the order a or angle α as the transform
parameter. Similarly, for a periodic matrix L we also use its order
a or angle α as the transform parameter, though it cannot be
considered as a rotation with angle α in the time–frequency plane.
Note that the DFT matrix F is a periodic matrix with period 4. In
order to make the DFT matrix F as a special case for the transform
matrix with period 4, we use an angle of 2π=P to denote the
transform parameter for a periodic transform matrix L with period
P. Then we denote the matrix L in the time–frequency plane
according to its angle parameters α.

I

•
1L

2L
3L

nL

1P−L

2P−L

•
•

•

•
•
•

•

aL

2F

3F

F

I

aF

I

•

bL

2bL

3bLnbL

( 1)N b−L
( 2)N b−L

•
•

•
•
•
•

•

aL

4bL
5bL

6bL

Fig. 1. (a) Denotation of Ln , (b) Fn with size 4� 4, and (c) Kn with angle parameters.

F. Zhang et al. / Optics & Laser Technology 64 (2014) 82–93 83



Download	English	Version:

https://daneshyari.com/en/article/7130381

Download	Persian	Version:

https://daneshyari.com/article/7130381

Daneshyari.com

https://daneshyari.com/en/article/7130381
https://daneshyari.com/article/7130381
https://daneshyari.com/

