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Abstract: In previous works, the authors have developed a trajectory planning algorithm for
spacecraft rendezvous which computed optimal Pulse-Width Modulated (PWM) control signals,
for circular and eccentric Keplerian orbits. The algorithm is initialized by solving the impulsive
problem first and then, using explicit linearization and linear programming, the solution is
refined until a (possibly local) optimal value is reached. However, trajectory planning cannot
take into account orbital perturbations, disturbances or model errors. To overcome these issues,
in this paper we develop a Model Predictive Control (MPC) algorithm based on the open-loop
PWM planner and test it for elliptical target orbits with arbitrary eccentricity (using the linear
time-varying Tschauner-Hempel model). The MPC is initialized by first solving the open-loop
problem with the PWM trajectory planning algorithm. After that, at each time step, our MPC
saves time recomputing the trajectory by applying the iterative linearization scheme of the
trajectory planning algorithm to the solution obtained in the previous time step. The efficacy
of the method is shown in a simulation study where it is compared to MPC computed used an
impulsive-only approach.
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1. INTRODUCTION

Technology enabling simple autonomous spacecraft ren-
dezvous and docking is becoming a growing field as access
to space continues increasing. The field has become very
active in recent years, with an increasingly growing litera-
ture. Among others, approaches based on trajectory plan-
ning and optimization (Breger and How (2008); Arzelier
et al. (2013, 2011)) and predictive control (Richards and
How (2003); Rossi and Lovera (2002); Asawa et al. (2006);
Gavilan et al. (2009, 2012); Larsson et al. (2006); Hartley
et al. (2012); Leomanni et al. (2014)) are emerging.

Classically, in these approaches the problem of rendezvous
is modeled by using impulsive maneuvers; one computes a
sequence of (possibly optimal) impulses (usually referred
to as AV’s) to achieve rendezvous. Other methods allow
the control signal (thrust) to take any value inside an al-
lowed range. This type of control signal is usually referred
to as Pulse-Amplitude Modulated (PAM).

However, neither impulsive actuation nor PAM actuation
capture with precision the behavior of real spacecraft
thrusters. A more realistic model has to take into account
that, typically, thrusters are ON-OFF actuators, i.e., the
thrusters are not able to produce arbitrary forces, but
instead can only be switched on (producing the maximum
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amount of force) or off (producing no force). These switch-
ing times are the only signals that can be controlled. This
type of control signal is usually referred to as Pulse-Width
Modulated (PWM). Trajectory planning in the rendezvous
problem with PWM actuation poses a challenge because
the system becomes nonlinear in the switching times.

Recently, Vazquez et al. (2011, 2014) introduced a tra-
jectory planning algorithm algorithm for spacecraft ren-
dezvous that was able to incorporate PWM control signals.
The former considered the linear time-invariant Clohessy-
Wiltshire model (target orbiting in a circular Keple-
rian orbit, see Clohessy and Wiltshire (1960)). The lat-
ter extended the approach to elliptical target orbits by
using the linear time-varying Tschauner-Hempel model
(see Tschauner and Hempel (1965)). Both methods start
from an initial guess computed by solving an optimal linear
program with PAM or impulsive actuation, approximate
the solution with ON-OFF thrusters, and then iteratively
linearize around the obtained solutions to improve the
PWM solution. For both circular and elliptical target or-
bits the algorithms are simple and reasonably fast, and we
showed simulations of its application favorably comparing
it with an impulsive-only approach.

However, these methods are based on trajectory planning
which cannot take into account orbital perturbations,
disturbances or model errors. To overcome these issues,
in this paper we develop a Model Predictive Control
(MPC) algorithm. The term Model Predictive Control
does not designate a specific control strategy but rather
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an ample range of control methods which make explicit
use of a model of the process to obtain the control
signal by minimizing an objective function over a finite
receding horizon. In MPC the process model is used
to predict the future plant outputs, based on past and
current values and on the proposed optimal future control
actions. These actions are calculated by the optimizer
taking into account the cost function (where the fuel cost
and the future tracking error are considered) as well as
the constraints. The MPC algorithm developed in this
paper is based on the previous open-loop PWM planner for
elliptical target orbits with arbitrary eccentricity (Vazquez
et al. (2014)). The MPC is initialized by first solving the
open-loop problem with the PWM trajectory planning
algorithm. After that, at each time step, our MPC saves
time recomputing the trajectory by applying the iterative
linearization scheme of the trajectory planning algorithm
to the solution obtained in the previous time step.

The structure of the paper is as follows. In Section 2
we introduce the Tschauner-Hempel model, both in the
impulsive and PWM case. We follow with Section 3
where we formulate the underlying optimization problems.
Section 4 describes a method that solves the planning
problem using PWM signals. Section 5 develops the model
predictive controller. In Section 6 we show simulations
of the method compared to MPC computed used an
impulsive-only approach. We finish with some remarks in
Section 7.

2. TSCHAUNER-HEMPEL MODEL OF
SPACECRAFT RENDEZVOUS

The Tschauner-Hempel model (see Tschauner and Hempel
(1965) or Carter (1998)) assumes that the target vehicle
is passive and moving along an elliptical orbit with semi-
major axis a and eccentricity e. Following Vazquez et al.
(2014), we write the Tschauner-Hempel using eccentric
anomaly instead of time. Let us first establish some nota-
tion. Note that ¢t and E are related in a one-to-one fashion
by using Kepler’s equation:

n(t—t,) =F —esinkE, (1)
where t, is the time at periapsis, a parameter of the
target’s which we use as a starting point to measure the
eccentric anomaly E. This equation is numerically invert-
ible (see any Orbital Mechanics reference, such as Wie
(1998)), and we will represent its inverse by the function
K, ie. E = K(t). Denote by Ey the eccentric anomaly
corresponding to tg, this is, By = K(t), and E; =
K(ty) = K(to + kT), where T is an adequately chosen
sampling time. Call as x, yx, and zx the position of the
chaser in a local-vertical/local-horizontal (LVLH) frame
of reference fixed on the center of gravity of the target
vehicle at time tj. In the (elliptical) LVLH frame, « refers
to the radial position, z to the out-of-plane position (in
the direction of the orbital angular momentum), and y is
perpendicular to these coordinates (no longer aligned with
the target velocity given that its orbit is not circular). The
velocity and inputs of the chaser in the LVLH frame at
time ?; are denoted, respectively, by vy x, vy r, and v, g,
and by vy g, Uy k, and u, j.

If there is no actuation (ie. uzr = Uy = U = 0),
the resulting transition equatlon was obtained exactly
by Yamanaka and Ankersen (2002) as follows:

X1 = A(tryr, th)Xp (2)
where

Xk = [Tk Yk 2k Vak Vyk vz,k]Ta (3)

and where A(tg41,tx) = YK(thrl)YK(t X with Y (4,) being
the fundamental matrix solution of the Tschauner-Hempel
model. Working expressions of this matrix and its inverse
can be found in Vazquez et al. (2014). They are as
in Yamanaka and Ankersen (2002) but using eccentric
anomaly and a different definition of the reference axes.

Next, we formulate two versions of the discretized equa-
tions. In the first version, the control inputs are considered
impulses which are applied at the middle of the sampling
interval. This is referred to as the impulsive discrete model.
In a second, more realistic version, thrusters can only
be switched on (producing the maximum force) or off
(producing no force), and only once during each sampling
time. This is referred to as the PWM discrete model.

2.1 Impulsive discrete model

For the impulsive model, we assume that we can apply an
impulse » in any axis and at any given sample time. For
simplicity’s purpose, we assume that only one impulse per
axis is allowed at each time interval and model the impulse
at the beginning of the time interval. We also assume that
impulses are limited above and below:

Umin S u S Umaz-

Exploiting the linearity of the system, it can be easily
shown that

Xpy1 = Atgyr, te) Xk + B(terr, te)ug, (4)
where up = [ug p Uy uz,k]T and, calling m the mass of
the spacecraft (assumed constant)

0 0 0

0 0 0

0 0 0
B(tk+17tk) - A(tk+lvtk) 1/m 0 0 (5)

0 1/m 0

0 0 1/m

Compact formulation
Next we develop a compact formulation that simplifies the
notation of the problem. The state at time ¢;4x41, given
the initial state at time ¢; (which is denoted as x;) and
the input signals from t; to time t; + &, is computed by
applying recursively Equation (4) and using the fact that
Ativr, t) Alti, tior) = Atipr, tio1):

Jj+k
Xjhi1 = A1, 1)%+ Y Ayt tip) Bt tu,

i=j

(6)

where it must be noted that A(t;,t;) = Id, where Id is the
identity matrix. Define now xg(j) and us(j) as a stack
of N, — j states and input signals, respectively, spanning
from time t; to time ¢, for the state and from time ¢; 1
to time ¢y, 1 for the controls, where N,, is the initial MPC
horizon (and desired time of rendezvous):

Xjt+1 u;
xs(j) =
XN,
Then,
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