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Abstract: The problem of active vibration control for a class of nonlinear mechanical system
is addressed. A recently developed nonlinear frequency response analysis technique is utilized
for the vibrational analysis and controller design. Unlike the linear case, the nonlinear system
oscillations are complex, which can be observed via the nonlinear Frequency Response Function
(FRF). In order to achieve a satisfactory vibration attenuation, an adaptive tuning method based
on the FRF, for selecting the controller gains is proposed. The proposed algorithm performs
sufficiently well for a given range of input excitation magnitudes and frequencies. A physically
motivated example is given to demonstrate the application of these results. Finally, the feasibility
of the proposed algorithm in a satellite vibration control application has been examined.
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1. INTRODUCTION

Mechanical vibrations are present in countless real-life sit-
uations, where the mechanical system exhibit oscillations
when subjected to certain disturbances. Most often these
vibration phenomena are highly undesirable, which may
even cause damage to the system itself. The vibration
control is concerned with the prediction and controlling of
these undesired oscillations. Vibration analysis and control
are an active, vast, and growing research area, due to its
practical importance and issues that arise in both linear
and nonlinear system designs. The vibration can generally
be controlled by adding controlling devices like dampers,
isolators, and actuators to the system. These devices are
added in such a way that the system’s properties are
modified to a desired one (Thenozhi and Yu (2013)). Most
of the vibration control methods work based on time-
domain techniques. These methods lack in describing how
a closed-loop system respond to the input excitation at
different frequencies and magnitudes. Since the vibration is
characterized by its frequency (or frequencies), amplitude,
and phase, it is important to study the frequency response
of these systems.

Frequency domain techniques for linear systems have led
to significant progress in analysis, modeling, and controller
design (Kerschen et al. (2006); Tang (1993); Tang and
Ortega (1993); Tang et al. (1995)). In reality, mechanical
systems posses many physical properties such as material
property, geometric nonlinearity, damping dissipation, and
even due to boundary conditions, which lead to nonlinear
vibration problems (Kerschen et al. (2006)). For that
reason, these nonlinear systems do not posses simple
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oscillations as defined in the case of linear systems. These
nonlinearities can result in some complex phenomenon,
like jumping, chaos, secondary resonance, bifurcation, etc.
(Nayfeh and Mook (2008)). In those instances, the classic
linear frequency response analysis tools are insufficient to
describe the behavior of the nonlinear system adequately.

The methods such as describing function (DF) lacks in
accuracy due to its approximation scheme (Khalil and
Grizzle (2002)). Nonlinear FRF such as the Generalized
Frequency Response Function (GFRF) (George (1959)) is
limited to second order due to its multi-dimensional char-
acteristics. An extension of the GFRF, termed as Output
Frequency Response Function (OFRF) was proposed in
Lang and Billings (1996), which represents the relation
between the system parameters and frequency response
using finite Volterra series. However, this technique fails
to detect some of the nonlinear phenomenons such as the
subharmonics, jumping, etc. (Billings (2013)). In Pavlov
et al. (2007), it has been shown that an FRF can be
found for a class of nonlinear systems termed as convergent
systems. The convergence property implies that the system
trajectories tend towards the unique bounded solution. If
the system under consideration is convergent, it signifies:
1) the system is stable (Lohmiller and Slotine (1998)); 2)
an FRF can be obtained due to the existence of a unique
steady-state solution (Pavlov et al. (2007)). Compared to
the DF, GFRF, and OFRF, this FRF gives an exact fre-
quency response via numerical or experimental approach.

The main objective of this paper is to introduce the poten-
tial of convergence analysis and nonlinear FRF in vibration
control problems. If the system under consideration is: 1)
convergent, it directly enables to derive a nonlinear FRF
for a band of excitation inputs, 2) non-convergent, first
a controller is used to obtain the convergence and then
the corresponding FRF for a band of excitation inputs is
derived. In terms of active vibration control, the controller
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gains are adapted based on the FRF of the system derived
within the band of interest, which assures a satisfactory
performance over that band. The control scheme devel-
oped here is applied to a mechanical system with cubic
stiffness, similar to the work in Peng and Lang (2008)
and to a satellite system, and the corresponding dynamic
responses of both the controlled and uncontrolled cases are
numerically evaluated.

2. FRF OF NONLINEAR CONVERGENT SYSTEMS

For a system to be satisfactory, it is necessary to analyze
its stability. In general a system’s stability is analyzed
by examining, whether the equilibrium points so deter-
mined are stable. The convergence analysis also termed
as contraction analysis, inspired by fluid mechanics, is
the extension of the stability properties of asymptotically
stable linear time-invariant systems. Unlike the Lyapunov
stability theorem which defines the stability with respect
to the equilibrium points, the convergence in convergent
systems implies that the state trajectories with different
initial conditions will converge to a unique bounded solu-
tion (Lohmiller and Slotine (1998)).

Let a dynamical nonlinear system be described by the
differential equation

ẋ = f(x, t) (1)

with x ∈ Rn is the state vector, t ∈ R+, and f : Rn×R+ →
Rn is a smooth nonlinear function. For the above system,
a convergence region (or contraction region), X is defined
where the system’s Jacobian matrix, J(x) = ∂f/∂x is
uniformly negative definite. The convergence properties of
the system (1) can be verified by performing a coordinate
transformation on J(x). The resulting generalized Jaco-
bian is defined as

J =

Υ̇ + ΥJ(x)


Υ−1 (2)

where Υ (x, t) is a uniformly invertible square matrix. If J
is uniformly negative definite such that

J ≤ −λmaxI, ∀x ∈ X ⊂ Rn, ∀t ∈ R (3)

where −λmax is the largest eigenvalue of J , then the
transformed system (2) is convergent, which implies that
all the solutions of the original system (1) converge expo-
nentially to a single trajectory, independently of the initial
conditions. If J is negative semi-definite, then the system
is semi-convergent under some mild conditions similar in
Barbalat’s lemma, this implies that the solutions converge
each other asymptotically. The global convergence or semi-
convergence is obtained when X = Rn.

FRF is the characteristics of a system that describes
its response to an input excitation as the function of
frequency. Consider a nonlinear time-invariant system,
which is forced by the excitation input w ∈ W

ẋ = f (x,w)
y = g(x)

(4)

where y is the system output. If the above system is conver-
gent, then there exists an uniformly bounded steady-state
(UBSS) solution, if for any ρ > 0 there exists σ > 0 such
that for any input w ∈ W the following implication holds
(Pavlov et al. (2007)):

|w| ≤ ρ ∀t ∈ R =⇒ |x̄w| ≤ σ ∀t ∈ R (5)

where x̄w is the steady-state solution, which depends on
the input excitation w. For the convergent systems, this
bounded solution x̄w is unique and limt→∞ x̄w(t)− xw(t)
= 0 for any x0 ∈ X and hence the system (4) is exponen-
tially stable.

If the system (4) is convergent with UBSS property for
a certain class of harmonic inputs w(t) = a sin(ωt) ∈ W,
then there exists a nonlinear function α : R3 → Rn such
that

x̄w(t) := α (v1, v2, ω) (6)

where v1 = a sin(ωt) and v2 = a cos(ωt). For the system
(4), this nonlinear function α (v1, v2, ω) is known as the
state-FRF and the function g (α (v1, v2, ω)) is known as
the output-FRF, which relates a sinusoidal input to the
corresponding steady-state output. Now the output of
the forced system at steady-state can be expressed as
ȳw(t) = g(x̄w(t)), which will have the same period of the
input signal w, but not necessarily sinusoidal.

The output response of the system for various amplitude
and frequency inputs can be represented using an amplifi-
cation gain γa (ω), which is the ratio between the maximal
absolute value at steady-state and the input signal ampli-
tude, so that

γa,ω =
1

a



sup
v21+v

2
2=a

2

|g (α (v1, v2, ω))|


=
|ȳw(t)|

a
(7)

Analyzing the above function, one can find the critical
amplitudes and frequencies for the system and design a
controller to bypass any undesirable effects such as the
vibrations.

3. VIBRATION CONTROL OF CONVERGENT
MECHANICAL SYSTEMS

In order to present the main idea, let us consider the
dynamics of a mechanical system of form

Mq̈ +Cq̇ +Kq +Φ(q) = Λw + Γu (8)

where M,C, and K ∈nq×nq are the mass, damping, and
stiffness matrices, respectively, q̈, q̇, and q ∈ Rnq are the
relative acceleration, velocity, and displacement vectors
respectively, Λ ∈ Rnq×nq denotes the influence of the
excitation force w on the system, Γ ∈ Rnq×nu is the
actuator location matrix, u ∈ Rnu 2 denotes the input
by means of which the system can be controlled, and
Φ(q) ∈ Rnq is the Odd Polynomial Nonlinearity (OPN),
which has the following of form

Φ(q) =

φ1(q1), ..., φnq(qnq)

T
(9)

where

φi(qi) =

p

p=1

bi,2p+1q
2p+1
i , bi,2p+1 > 0, i = 1, ..., nq

with p as the highest order of the nonlinearity.

3.1 Problem Formulation

Let us consider a feedback controller of form

u = −Θx (10)

2 In the case of full-state feedback control nq = nu and for the
second-order mechanical systems n = 2nq.
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