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Recently, two phase evaluation methods were proposed to measure nanometric displacements by means of digital 

speckle pattern interferometry when the phase changes introduced by the deformation are in the range [0, 𝜋) rad. 

However, one of these techniques requires separate recording of the intensities of the object and the reference 

beams which correspond to both the initial and the deformed interferograms. The other technique only works to 

measure out-of-plane displacements. In this paper, we present a novel approach that overcomes these limitations. 

The performance of the proposed method is analyzed using computer-simulated speckle interferograms and it is 

also compared with the results obtained with a phase-shifting technique. Finally, an application of the proposed 

phase method used to process experimental data is illustrated. 

1. Introduction 

Whole-field optical techniques can be used as useful tools to test 

micro-system devices due to their advantages, which include robustness, 

high processing speed, and also non-contact and non-destructive nature 

[1–6] . One of these optical techniques is digital speckle pattern inter- 

ferometry (DSPI), which has a high sensitivity and also has been widely 

used for the measurement of displacement and strain fields generated 

by rough object surfaces [7] . This technique is based on the evaluation 

of the optical phase changes that are coded in speckle interferograms, 

which are usually displayed in the form of fringe patterns. 

In practical applications of DSPI, the phase-shifting and the Fourier- 

transform methods are the most common techniques used to retrieve 

the phase distribution introduced by the deformation [8] . As it is well 

known, phase-shifting methods have high accuracy, and the sign ambi- 

guity is resolved automatically due to the recording of multiple inter- 

ferograms. However, a mirror driven by a linear computer-controlled 

piezoelectric transducer must be introduced in the optical setup, thus 

generating an additional technical complexity. Moreover, these algo- 

rithms assume that phase-shifts between successive frames are all equal, 

which can be difficult to obtain experimentally. Phase-shifter miscali- 

brations and vibrations during the acquisition of multiple speckle in- 

terferograms also produce systematic errors which must be appropri- 

ately addressed [9] . On the contrary, the Fourier transform method has 

the advantage of requiring the acquisition of only two speckle inter- 

ferograms to be analyzed. Even so, when the phase changes are non- 

monotonous, this method also needs the introduction of spatial carrier 
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fringes to overcome the sign ambiguity [8] . Although there exist sim- 

ple ways of introducing spatial carrier fringes in the optical setup, such 

as tilting the reference beam between the acquisition of both speckle 

interferograms to be correlated, this procedure also complicates the au- 

tomation of the interferometer operation. 

A novel phase evaluation method was recently proposed to measure 

nanometric displacements by means of DSPI when the phase change in- 

troduced by the deformation is in the range [0, 𝜋) rad, i.e., when the 

generated correlation fringes show less than one fringe [10] . In this case, 

the wrapped phase map does not present the usual 2 𝜋 phase disconti- 

nuities, and it is therefore unnecessary to apply a spatial phase unwrap- 

ping algorithm to obtain the continuous phase distribution. It must be 

noted that cases of correlation fringe patterns presenting less than one 

fringe can appear quite frequently when micro-systems are inspected 

[11] . This phase retrieval method is based on the calculation of the lo- 

cal Pearson’s correlation coefficient between the two speckle interfer- 

ograms generated by both deformation states of the object. Although 

this approach does not need the introduction of a phase-shifting facil- 

ity or spatial carrier fringes in the optical setup, the intensities of the 

object and the reference beams corresponding to both the initial and 

the deformed interferograms must be recorded. It should be noted that 

this limitation complicates the automation of the interferometer oper- 

ation. Moreover, this limitation does not allow the application of this 

method for the analysis of non-repeatable dynamic events by recording 

a sequence of interferograms throughout the entire deformation history 

of the testing object. 

More recently, Tendela et al. [12] have presented a phase retrieval 

method based on the approach reported in Ref. [10] to be used in a 

https://doi.org/10.1016/j.optlaseng.2018.05.023 

Received 12 April 2018; Received in revised form 3 May 2018; Accepted 21 May 2018 

0143-8166/© 2018 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.optlaseng.2018.05.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/optlaseng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optlaseng.2018.05.023&domain=pdf
mailto:tendela@ifir-conicet.gov.ar
https://doi.org/10.1016/j.optlaseng.2018.05.023


L.P. Tendela, G.E. Galizzi Optics and Lasers in Engineering 110 (2018) 149–154 

DSPI. In this method there is no need to record the intensities of the 

object and the reference beams corresponding to both the initial and the 

deformed interferograms. However, when this technique is applied the 

rms phase errors for in-plane measurements are very large. Therefore, 

the approximations made in Ref. [12] are no longer valid for the in-plane 

case and this method is not suitable to measure in-plane displacements. 

In this paper, we present a phase retrieval approach based on the 

methods reported in Ref. [10,12] , which overcomes the aforementioned 

limitations. Therefore, there is no need to record the intensities of the 

object and the reference beams corresponding to both the initial and 

the deformed interferograms, and this technique can measure both in- 

plane and out-of-plane displacement fields. Furthermore, we show that 

the approximations made in Ref. [12] can be reached more naturally. 

In the following section, a description of the proposed phase re- 

trieval method is presented. Afterwards, the performance of the pro- 

posed method is analyzed using computer-simulated speckle interfero- 

grams for in-plane and of out-of-plane displacements. This analysis al- 

lows us to evaluate the rms phase errors introduced by the novel ap- 

proach and also to compare its performance with the one given by a 

phase-shifting algorithm. Finally, an application of the phase retrieval 

method used to process experimental data is also illustrated. 

2. Theorical concepts 

As it is well known, DSPI is based on the recording of the coherent 

superposition of two optical fields, at least one of them being a speckle 

field generated by the scattered light coming from the rough surface of 

the specimen. The result of the superposition is another speckle field 

called interferogram and its intensity I can be expressed as [7] 

𝐼 = 𝐼 1 + 𝐼 2 + 2 
√
𝐼 1 𝐼 2 cos ( 𝜙1 − 𝜙2 ) = 𝐼 0 + 𝐼 𝑀 

cos ( 𝜙) , (1) 

where I 1 and I 2 are the intensities of the object and the reference optical 

fields and 𝜙1 and 𝜙2 are their associated phases, respectively, 𝐼 0 = 𝐼 1 + 

𝐼 2 is the intensity bias, 𝐼 𝑀 

= 2( 𝐼 1 𝐼 2 ) 1∕2 is the modulation intensity, and 

𝜙 = 𝜙1 − 𝜙2 accounts for the optical path difference from the light source 

to the observation point considered. 

If the scattering surface undergoes a deformation, the resulting in- 

tensity changes accordingly. The intensities I a and I b corresponding to 

the speckle interferograms recorded in the initial (a) and the deformed 

states (b), respectively, are determined by 

𝐼 𝑎 = 𝐼 𝑎 0 + 𝐼 𝑎𝑀 

cos 𝜙𝑎 = 𝐼 𝑎 0 + 𝐼 𝑎𝑀 

cos 𝜙𝑠 

𝐼 𝑏 = 𝐼 𝑏 0 + 𝐼 𝑏𝑀 

cos 𝜙𝑏 = 𝐼 𝑏 0 + 𝐼 𝑏𝑀 

cos ( 𝜙𝑠 + Δ𝜙) , (2) 

where 𝜙𝑠 = 𝜙𝑎 accounts for the random change in the optical path due 

to the roughness of the scattering surface and Δ𝜙 = 𝜙𝑏 − 𝜙𝑎 corresponds 

to the deterministic change in the path introduced by the underwent 

deformation. 

Below, it is presented a relationship to characterize the deterministic 

phase change Δ𝜙 as a function of the Pearson’s correlation coefficient 

between the two interferograms described by Eq. (2) . The Pearson’s cor- 

relation coefficient C ( p, q ) between two random variables p and q is de- 

fined as the covariance of the two variables divided by the product of 

their standard deviations and can be estimated as [13] 

𝐶( 𝑝, 𝑞) = 

⟨( 𝑝 − ⟨𝑝 ⟩)( 𝑞 − ⟨𝑞⟩) ⟩[
( ⟨𝑝 2 ⟩ − ⟨𝑝 ⟩2 )( ⟨𝑞 2 ⟩ − ⟨𝑞⟩2 ) ]1∕2 , (3) 

where ⟨ ⟩ stands for the mean value of the sampled random variable. 

Taking into account general hypotheses about the speckle distribu- 

tion generated by the rough object, the correlation coefficient C ( I a , I b ) 

for the two recorded interferograms I a and I b is given by 

𝐶 = 

⟨( 𝐼 𝑎 − ⟨𝐼 𝑎 ⟩)( 𝐼 𝑏 − ⟨𝐼 𝑏 ⟩) ⟩
[( ⟨𝐼 2 

𝑎 
⟩ − ⟨𝐼 𝑎 ⟩2 )( ⟨𝐼 2 𝑏 ⟩ − ⟨𝐼 𝑏 ⟩2 )] 1∕2 , (4) 

where the operator ⟨ ⟩ is evaluated by using a sliding window technique 

on each recorded image, and Eq. (2) can be used. The reader should 

note that the spatial coordinates of the pixel ( m, n ) at the CCD for 𝑚, 𝑛 = 

1 , … , 𝐿, where L is the number of pixels along the horizontal and vertical 

directions, were omitted intentionally for the sake of clarity. 

Assuming that the intensity and phase of fully developed and polar- 

ized speckle fields are statistically independent, the following relation- 

ships are valid [14] 

⟨𝐼 𝑀 

cos 𝜙𝑠 ⟩ = ⟨𝐼 𝑀 

⟩⟨cos 𝜙𝑠 ⟩, ⟨𝐼 𝑀 

sin 𝜙𝑠 ⟩ = ⟨𝐼 𝑀 

⟩⟨sin 𝜙𝑠 ⟩, ⟨𝐼 2 
𝑀 

sin 2 𝜙𝑠 ⟩ = ⟨𝐼 2 
𝑀 

cos 2 𝜙𝑠 ⟩, ⟨sin 𝜙𝑠 ⟩ = ⟨cos 𝜙𝑠 ⟩ ≈ 0 , 

⟨sin 𝜙𝑠 cos 𝜙𝑠 ⟩ ≈ 0 . (5) 

In addition, considering that Δ𝜙 is a deterministic magnitude, and after 

some mathematical manipulations, the numerator N ab of Eq. (4) can be 

expressed as a function of cos Δ𝜙 as follows 

𝑁 𝑎𝑏 = ⟨𝐼 𝑎 0 𝐼 𝑏 0 ⟩ − ⟨𝐼 𝑎 0 ⟩⟨𝐼 𝑏 0 ⟩ + 

1 
2 
⟨𝐼 𝑎𝑀 

𝐼 𝑏𝑀 

⟩ cos Δ𝜙. (6) 

In a similar way, the denominator D ab of Eq. (4) can be computed 

as 

𝐷 𝑎𝑏 = 

[(⟨
𝐼 2 
𝑎 0 
⟩
− ⟨𝐼 𝑎 0 ⟩2 + 

1 
2 
⟨
𝐼 2 
𝑎𝑀 

⟩)
×
(⟨

𝐼 2 
𝑏 0 
⟩
− ⟨𝐼 𝑏 0 ⟩2 + 

1 
2 
⟨
𝐼 2 
𝑏𝑀 

⟩)]1∕2 
. (7) 

Replacing Eqs. (6) and (7) into Eq. (4) , the correlation coefficient C 

can be estimated as 

𝐶( 𝐼 𝑎 , 𝐼 𝑏 ) = 

⟨𝐼 𝑎 0 𝐼 𝑏 0 ⟩ − ⟨𝐼 𝑎 0 ⟩⟨𝐼 𝑏 0 ⟩ + 

1 
2 ⟨𝐼 𝑎𝑀 

𝐼 𝑏𝑀 

⟩ cos Δ𝜙[
( 
⟨
𝐼 2 
𝑎 0 
⟩
− ⟨𝐼 𝑎 0 ⟩2 + 

1 
2 

⟨
𝐼 2 
𝑎𝑀 

⟩
)( 
⟨
𝐼 2 
𝑏 0 
⟩
− ⟨𝐼 𝑏 0 ⟩2 + 

1 
2 

⟨
𝐼 2 
𝑏𝑀 

⟩
) 
]1∕2 . 

(8) 

Rearranging Eq. (8) , the cos Δ𝜙 can be written as 

cos Δ𝜙 = 𝐶( 𝐼 𝑎 , 𝐼 𝑏 ) 

×
2 
[
( 
⟨
𝐼 2 
𝑎 0 
⟩
− ⟨𝐼 𝑎 0 ⟩2 + 

1 
2 

⟨
𝐼 2 
𝑎𝑀 

⟩
)( 
⟨
𝐼 2 
𝑏 0 
⟩
− ⟨𝐼 𝑏 0 ⟩2 + 

1 
2 

⟨
𝐼 2 
𝑏𝑀 

⟩
) 
]1∕2 

⟨𝐼 𝑎𝑀 

𝐼 𝑏𝑀 

⟩
−2 

⟨𝐼 𝑎 0 𝐼 𝑏 0 ⟩ − ⟨𝐼 𝑎 0 ⟩⟨𝐼 𝑏 0 ⟩⟨𝐼 𝑎𝑀 

𝐼 𝑏𝑀 

⟩ . (9) 

As before, considering that the intensity bias and the modulation 

intensity of fully developed and polarized speckle fields are statistically 

independent, the following relationships are also valid [14] 

⟨𝐼 𝑎 0 ⟩ = ⟨𝐼 𝑏 0 ⟩ = ⟨𝐼 0 ⟩, ⟨𝐼 𝑎 0 𝐼 𝑏 0 ⟩ = ⟨𝐼 2 0 ⟩, ⟨𝐼 2 
𝑎 0 ⟩ = ⟨𝐼 2 

𝑏 0 ⟩ = ⟨𝐼 2 0 ⟩, ⟨𝐼 𝑎𝑀 

⟩ = ⟨𝐼 𝑏𝑀 

⟩ = ⟨𝐼 𝑀 

⟩, 
⟨𝐼 𝑎𝑀 

𝐼 𝑏𝑀 

⟩ = ⟨𝐼 2 
𝑀 

⟩, 
⟨𝐼 2 

𝑎𝑀 

⟩ = ⟨𝐼 2 
𝑏𝑀 

⟩ = ⟨𝐼 2 
𝑀 

⟩. (10) 

After some mathematical manipulations, the phase change Δ𝜙 needed to 

determine the displacement components can be evaluated by inverting 

Eq. (9) as follows 

Δ𝜙 = acos 
[
𝐶( 𝐼 𝑎 , 𝐼 𝑏 )( 𝛼 + 1) − 𝛼

]
, (11) 

where acos[] is the inverse of the cosine function, and the coefficient 𝛼

is defined as 

𝛼 = 2 
⟨𝐼 2 0 ⟩ − ⟨𝐼 0 ⟩2 ⟨𝐼 2 

𝑀 

⟩ . (12) 

For further analysis, it will be useful to express the coefficient 𝛼 as a 

function of the intensities of the object and reference fields I 1 and I 2 

𝛼 = 

⟨𝐼 2 1 ⟩ − ⟨𝐼 1 ⟩2 + ⟨𝐼 2 2 ⟩ − ⟨𝐼 2 ⟩2 
2 ⟨𝐼 1 ⟩⟨𝐼 2 ⟩ . (13) 
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