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a b s t r a c t 

To address dual-wavelength interferograms with arbitrary phase shifts and second-order harmonics, a novel dual- 

wavelength iterative method (DWIM) based on the least-squares algorithm is proposed. In generalized dual- 

wavelength phase-shifting interferometry, to compensate for the phase-shift errors consisting of systematic and 

random phase-shift error, the wrapped phases of single-wavelength with high accuracy can be simultaneously 

obtained from generalized dual-wavelength interferograms without second-order harmonics. In addition, this 

method is also employed to deal with randomly phase-shifted dual-wavelength interferograms with the second- 

order harmonics, and then the effects of the fringe number in interferogram and the number of interferograms used 

on the accuracy of phase extraction are investigated by numerical simulations. Based on theoretical analysis and 

simulation results of DWIM, we present the basic relationship between the number of wavelengths, the second- 

order harmonics and the requirement of the minimum number of interferograms. Finally, the effectiveness of this 

method is proved by the simulation results of the spherical cap, and its applicability is verified with the results 

of the micro-sphere, the HeLa cell and the red blood cell, respectively. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Optical phase-shifting interferometry is a well-established technique 

widely used in various applications, such as optical imaging [1,2] and 

surface topography measurement [3,4] . However, in single-wavelength 

interferometry (SWI), when the surface features of the object under 

test exceed half of the probe wavelength, the phase of the object can- 

not be determined unambiguously. So a complicated phase unwrap- 

ping algorithm must be presented to remove the phase discontinuities 

and then achieve true phase of the object in SWI. To overcome this 

problem, various dual-wavelength interferometry (DWI) [5–16,22] or 

three-wavelength interferometry (TWI) [19–21] techniques have been 

proposed since they can yield the phase of the synthetic beat wave- 

length by the subtraction operation between the wrapped phases of 

single-wavelength [5–7] . In [8] , based on subtraction of two wrapped 

phases, DWI is first introduced to measure three-dimensional shape of 

millimeter-scale object with a scanning dye laser. In [9,10] , in-line DWI 

(named as Abdelsalam’s method) or TWI is employed to extract the 

quantitative phases at each wavelength from the interferograms in SWI 

by using traditionally temporal phase-shifting algorithms, so its phase 
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retrieving process is very time-consuming and complicated. In [11–13] , 

to realize real-time and dynamic measurement, the wrapped phases of 

single-wavelength can be retrieved from only a single-shot off-axis in- 

terferogram. But, off-axis DWI or TWI restricts the space-bandwidth 

product of the optical imaging system, and its phase retrieval accu- 

racy is easily affected due to the use of spatial Fourier transform and 

a filter window. In [14] , a simultaneous phase-shifting DWI (named as 

Zhang’s method) is proposed to extract the wrapped phases of single- 

wavelength based on two-step approximate algorithm, which results in 

the measuring inaccuracy. In [15,16] , a phase retrieval method of single- 

wavelength from a sequence of simultaneous multi-wavelength in-line 

phase-shifting interferograms is presented by using the least-squares it- 

erative algorithm (LSIA). However, because of simply estimating initial 

phase shifts of single-wavelength, this method cannot exactly extract the 

quantitative phases at each wavelength from unknown phase-shifted in- 

terferograms in practice. Subsequently, in [17] , the phase shifts at each 

wavelength are estimated by principle component analysis (PCA) [18] , 

then the wrapped phases of single-wavelength are retrieved based on 

LSIA using these phase shifts. Though the accurate phase retrieval can 

be obtained, the temporal and spatial hybrid matching condition is not 

easily satisfied in reality. In [19,20] , a number of red-green-blue three- 

wavelength interferograms are recorded by using a color CCD. Though 

the wrapped phases at each wavelength can be easily retrieved based 
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on the color separation method, it cannot work well if the difference 

value between two wavelengths is too small. In [22] , a method of phase 

extraction from five interferograms based on two intensities without the 

corresponding dc terms (named as Xu’s method) is proposed. But, the 

strict requirements for the precision and environmental stability of the 

phase shifter are put forward due to the fact that this method requires 

2 𝜋 special phase shift. 

In generalized dual-wavelength phase-shifting interferometry (GDW- 

PSI), the accuracy of phase retrieval at each wavelength can be affected 

by the systematic errors. The two common sources of systematic errors 

are the phase-shift error, and non-sinusoidal waveform of the signal, 

which is due to nonlinearity of the detector or multiple-beam interfer- 

ence [23,24] ; the phase-shift errors consist of systematic phase-shift er- 

ror that is induced by linear miscalibration or nonlinear response of the 

phase shifter, and random phase-shift error that is caused by the im- 

perfect phase-shifting mechanism or unstable environments. In the case 

that the effect of second-order harmonics on phase extraction accuracy 

can be ignored, we only need to deal with arbitrarily phase-shifted dual- 

wavelength interferograms. In the case that the coupled effects of arbi- 

trary phase shifts and second-order harmonics on phase extraction ac- 

curacy can not be ignored, we need to address dual-wavelength interfer- 

ograms containing arbitrary phase shifts and second-order harmonics. 

These two issues are very important for extracting the wrapped phases of 

single-wavelength with high accuracy in GDWPSI. Owing to the complex 

effects of these two errors on phase extraction of single-wavelength from 

dual-wavelength interferograms, the aforementioned algorithms in DWI 

or TWI do not efficiently deal with the two problems simultaneously to 

provide accurate phases. 

In this paper, to deal with these two problems simultaneously, a 

novel dual-wavelength iterative method (DWIM) is presented based on 

the least-squares iterative algorithm [25,26] . As an example, DWIM 

is employed to analyze dual-wavelength interferograms with arbitrary 

phase shifts as well as deal with dual-wavelength interferograms con- 

taining arbitrary phase shifts and intensity nonlinearity. Subsequently, 

the phases and the phase shifts with high accuracy at each wavelength 

can be simultaneously achieved by using DWIM, and then the phase at 

synthetic beat wavelength can be easily obtained by the subtraction op- 

eration. The validity of this method is demonstrated by the simulation 

results of the spherical cap, and its applicability is investigated through 

the results of the micro-sphere, the HeLa cell and the red blood cell, re- 

spectively. Finally, discussions on DWIM and GDWPSI are also depicted. 

To the best of our knowledge, this is the first time that this method is 

proposed. 

2. Principle 

Owing to the existence of nonsinusoidal waveforms in GDWPSI, 

the intensity possessing harmonics up to the p th order, can be theo- 

retically expressed as an incoherent addition of the interferograms at 

𝜆𝑗 ( 𝑗 = 1 , 2 , … , 𝑞 ) 

𝐼 ′
𝑚𝑛 

= 

𝑝 ∑
𝑘 =0 

𝑞 ∑
𝑗=1 

𝑏 𝜆𝑗 ,𝑚𝑛𝑘 
cos 

[
𝑘 ( 𝜑 𝜆𝑗 ,𝑛 + 𝛿𝜆𝑗,𝑚 

) 
]
, (1) 

where ′ represents the theoretical value; 
∑𝑞 

𝑗=1 𝑏 𝜆𝑗 ,𝑚𝑛 0 is the total dc 

term; 𝑏 𝜆𝑗 ,𝑚𝑛𝑘 denotes the modulation amplitude of the k th order har- 

monics corresponding to 𝜆j ( k ≥ 1); m represents the m th phase-shifted 

interferogram ( 𝑚 = 1 , 2 , … , 𝑀 ) ; each interferogram is reshaped into one 

column with size of N , and n denotes the pixel points in each image 

( 𝑛 = 1 , 2 , … , 𝑁 ) ; q represents the number of wavelengths, namely, 𝑞 = 2 
in DWIM; 𝜑 𝜆𝑗 ,𝑛 and 𝛿𝜆𝑗,𝑚 are the phases and the phase shifts correspond- 

ing to 𝜆j , respectively. 

Defining a new set of variables as 𝑋 𝜆𝑗, 0 
= 

∑𝑞 

𝑗=1 𝑏 𝜆𝑗 ,𝑚𝑛 0 , 

𝑋 𝜆𝑗, 2 𝑘 −1 
= 𝑏 𝜆𝑗 ,𝑚𝑛𝑘 

cos ( 𝑘 𝜑 𝜆𝑗 ,𝑛 ) , 𝑋 𝜆𝑗, 2 𝑘 
= − 𝑏 𝜆𝑗 ,𝑚𝑛𝑘 

sin ( 𝑘 𝜑 𝜆𝑗 ,𝑛 ) , 𝑌 𝜆𝑗, 0 
= 1 , 

𝑌 𝜆𝑗, 2 𝑘 −1 
= cos ( 𝑘 𝛿𝜆𝑗,𝑚 ) , and 𝑌 𝜆𝑗, 2 𝑘 

= sin ( 𝑘 𝛿𝜆𝑗,𝑚 ) ( 𝑘 = 1 , 2 , … , 𝑝 ) , thus 

Eq. (1) is rewritten as 

𝐼 ′
𝑚𝑛 

= 

2 𝑝 ∑
𝑖 =0 

𝑞 ∑
𝑗=1 

𝑋 𝜆𝑗,𝑖 
𝑌 𝜆𝑗,𝑖 

. (2) 

In Eq. (2) , it can be supposed that the total dc term and the mod- 

ulation amplitude do not vary with frames. If 𝛿𝜆𝑗,𝑚 corresponding to 𝜆j 

is known, the phases at each wavelength can be retrieved from at least 

2 𝑝𝑞 + 1 interferograms in GDWPSI. In general, the more interferograms, 

the higher accuracy could be got for phase extraction in DWIM. The ac- 

cumulated error E n , which results from the sum of squares of difference 

between the theoretical intensity and the measured one of the n th pixel 

point of M interferograms, can be described as 

𝐸 𝑛 = 

𝑀 ∑
𝑚 =1 

{ 2 𝑝 ∑
𝑖 =0 

𝑞 ∑
𝑗=1 

𝑋 𝜆𝑗,𝑖 
𝑌 𝜆𝑗,𝑖 

− 𝐼 𝑚𝑛 

} 2 

, (3) 

where I mn is the practically captured intensity of the interferogram. 

Based on the principle of the least-squares algorithm, Eq. (3) can 

achieve the global minimum when the derivative of E n with respect to 

𝑋 𝜆𝑗,𝑖 
is equal to zero, which can be described as 

𝜕 𝐸 𝑛 

𝜕 𝑋 𝜆𝑗,𝑖 

= 0( 𝑖 = 0 , 1 , 2 , … , 2 𝑝, 𝑗 = 1 , 2 , … , 𝑞) . (4) 

Consequently, according to Eq. (4) , we can obtain a new equation as 

follows: 

𝐴 

( 𝑛 ) 
𝜆𝑗,𝑖𝑙 

𝑋 

( 𝑛 ) 
𝜆𝑗,𝑖 

= 𝐵 

( 𝑛 ) 
𝜆𝑗,𝑙 

, (5) 

where 𝐴 

( 𝑛 ) 
𝜆𝑗,𝑖𝑙 

= 

∑𝑀 

𝑚 =1 𝑌 𝜆𝑗,𝑖 𝑌 𝜆𝑗,𝑙 , 𝐵 

( 𝑛 ) 
𝜆𝑗,𝑙 

= 

∑𝑀 

𝑚 =1 𝐼 𝑚𝑛 𝑌 𝜆𝑗,𝑙 ( 𝑖, 𝑙 = 0 , 1 , 2 , … , 2 𝑝 ) . 
From Eq. (5) , the unknown 𝑋 𝜆𝑗,𝑖 

can be solved and the quantitative 

phases 𝜑 𝜆𝑗 ,𝑛 at each wavelength 𝜆j can be determined by 

𝜑 𝜆𝑗 ,𝑛 
= 

1 
𝑘 
tan −1 

( 

− 

𝑋 𝜆𝑗, 2 𝑘 

𝑋 𝜆𝑗, 2 𝑘 −1 

) 

( 𝑘 = 1 , 2 , … , 𝑝, 𝑗 = 1 , 2 , … , 𝑞) . (6) 

In Eq. (6) , pq phase images can be yielded, but most phases are un- 

available. In the case of k > 1, for dual-wavelength interferograms with 

second-order harmonics, 𝑏 𝜆𝑗 ,𝑚𝑛 1 is much larger than 𝑏 𝜆𝑗 ,𝑚𝑛𝑘 ; thus, the cal- 

culated phase 𝜑 𝜆𝑗 ,𝑛 can have a large error by using the ratio of − 𝑋 𝜆𝑗, 2 𝑘 
to 𝑋 𝜆𝑗, 2 𝑘 −1 

for estimating phases in DWIM. Consequently, Eq. (6) should 

be rewritten as 

𝜑 𝜆𝑗 ,𝑛 
= tan −1 

( 

− 

𝑋 𝜆𝑗, 2 𝑘 

𝑋 𝜆𝑗, 2 𝑘 −1 

) 

( 𝑘 = 1 , 𝑗 = 1 , 2 , … , 𝑞) . (7) 

Once the phases 𝜑 𝜆𝑗 ,𝑛 at each wavelength are estimated with correct 

global sign by using Eq. (7) , the phase shifts can be determined with 

correct direction from at least 2 𝑝𝑞 + 1 interferograms in DWIM. 

Defining another set of variables as 𝑋 

′
𝜆𝑗, 0 

= 1 , 𝑋 

′
𝜆𝑗, 2 𝑘 −1 

= cos ( 𝑘 𝜑 𝜆𝑗 ,𝑛 ) , 
𝑋 

′
𝜆𝑗, 2 𝑘 

= sin ( 𝑘 𝜑 𝜆𝑗 ,𝑛 ) , 𝑌 
′
𝜆𝑗, 0 

= 

∑𝑞 

𝑗=1 𝑏 𝜆𝑗 ,𝑚𝑛 0 , 𝑌 
′
𝜆𝑗, 2 𝑘 −1 

= 𝑏 𝜆𝑗 ,𝑚𝑛𝑘 
cos ( 𝑘 𝛿𝜆𝑗,𝑚 ) , and 

𝑌 ′
𝜆𝑗, 2 𝑘 

= − 𝑏 𝜆𝑗 ,𝑚𝑛𝑘 
sin ( 𝑘 𝛿𝜆𝑗,𝑚 )( 𝑘 = 1 , 2 , … , 𝑝 ) , Eq. (1) is rewritten as 

𝐼 ′
𝑚𝑛 

= 

2 𝑝 ∑
𝑖 =0 

𝑞 ∑
𝑗=1 

𝑋 

′
𝜆𝑗,𝑖 

𝑌 ′
𝜆𝑗,𝑖 

. (8) 

In Eq. (8) , it can be assumed that the total dc term and the modu- 

lation amplitude do not have pixel-to-pixel variation. The accumulated 

error E m 

, which results from the sum of squares of difference between 

the theoretical intensity and the measured one of the m th interferogram 

of N pixel points, can be expressed as 

𝐸 𝑚 = 

𝑁 ∑
𝑛 =1 

{ 2 𝑝 ∑
𝑖 =0 

𝑞 ∑
𝑗=1 

𝑋 

′
𝜆𝑗,𝑖 

𝑌 ′𝜆𝑗,𝑖 − 𝐼 𝑚𝑛 

} 2 

. (9) 

To obtain the global minimum of Eq. (9) , we have 
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