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For the calibration of a structured light system, one type of highly accurate calibration method was developed by 

treating the projector as an inverse camera. This type of method typically creates pixel-to-pixel mapping between 

a camera point and a projector point using fringe patterns and resultant phase maps in orthogonal directions. 

However, requiring orthogonal patterns limits its feasibility of implementation on systems where the illumination 

device (e.g. grating projectors, interferometers, etc.) only supports fringe projection in one direction. This paper 

introduces a novel calibration method that only uses patterns in a single direction. We have theoretically proved 

that there exists one degree-of-freedom of redundancy in conventional calibration methods, making it possible to 

reduce the requirement of using orthogonal fringe patterns. Experiments show that under a measurement range 

of 200 mm( X ) × 150 mm ( Y ) ×120 mm ( Z ), our measurement results are comparable to the results obtained using 

conventional calibration method. Evaluated by repeatedly measuring a sphere with 147.726 mm diameter, our 

measurement accuracy on average can be as high as 0.20 mm with a standard deviation of 0.12 mm. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Optical means of three-dimensional (3D) surface measurement has 

been of great importance in a variety of applications ranging from in- 

dustrial inspection, robotics, and other applications. Among all optical 

3D surface measurement techniques, the structured light technology 

has been increasingly studied owing to its merits of flexible system 

setup, high-speed and high-resolution measurements [1,2] . The mea- 

surement accuracy of structured light technology is largely determined 

by whether one could achieve highly accurate system calibration, 

which requires accurately calibrating both the image acquisition device 

(e.g. camera) and the active illumination device (e.g. projector). 

The calibration of a camera has been well studied over the past 

several decades. Initial calibration techniques started from developing 

techniques with precisely manufactured 3D calibration targets [3,4] . 

Then, Tsai [5] reduced the calibration target to two-dimensional (2D) 

ones with out-of-plane rigid shift employed to provide depth informa- 

tion. Later, as a milestone in camera calibration, Zhang [6] has enabled 

calibration with 2D targets that can be flexibly arranged with arbitrary 

orientations. Following Zhang ’s method, researchers developed ad- 

vanced technologies that allow the usage of imperfect [7–10] or active 

targets [11–13] . Some recent advances even extended such technology 

to out-of-focus camera calibration [14] . 

For a structured light system, the projector should also be calibrated 

to realize absolute 3D reconstruction. Yet, such task is comparatively 
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more complicated since unlike a camera, the projector cannot capture 

images by itself. Methods that extract the exact system parameters (e.g. 

positions, orientations) of the camera and projector [15–17] provide a 

solution, yet such methods typically require a time-consuming calibra- 

tion process. Because of the level of complexity of projector calibration, 

the reference-plane-based calibration [18–21] is still a prevailing 

technology in the field of optics. Such methods have the merit of a 

easy-to-compute phase-to-depth conversion. However, this kind of 

technology requires the reference plane to have a good optical property 

and surface flatness, and the accuracy of calibration could be affected 

if the imaging lens is non-telecentric. To address the limitations of a 

simple reference-plane-based calibration, optimization techniques (e.g. 

polynomial fitting) [22–26] were used to decode depth information 

from projector patterns ’ codifications (e.g. phase value). 

Apart from the aforementioned technologies, a different set of 

technologies were developed which were originated from the con- 

cept of treating the projector as an inverse camera [27] . Zhang and 

Huang [28] developed the enabling technology which allows the 

projector to “capture ” images like a camera. The technology essentially 

maps a camera point to a projector point using absolute phase, in which 

both horizontal and vertical patterns are required to locate both u and v 

in 2D projector pixel coordinate. With such mapping scheme, the target 

images for the projector can also be created and thus the projector can 

be calibrated using similar strategies as used in camera calibration. 

Following Zhang and Huang ’s work, there were a series of different tech- 

nologies to improve the accuracy including linear interpolation [29] , 
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Fig. 1. Pinhole imaging model. The picture is reprinted from [33] . 

bundle adjustment [30] , residual error compensation [31] , or enhanced 

feature detection [32] . Further innovations have extended the calibra- 

tion to a system with an out-of-focus projector [33] and to a large-range 

measurement system [34] . Such type of methods successfully addressed 

the long existing puzzle for projector calibration. However, a crucial 

limitation of this technology is its requirement of patterns in orthog- 

onal directions. This technology has been proven very efficient for a 

structured light system with digital fringe projection. Since a video 

projector is programmable by the user, one can easily generate patterns 

in orthogonal directions. Yet for other types of systems with different 

fringe generation schemes (e.g. grating diffractions, interference, etc.), 

it is challenging to produce patterns in orthogonal directions, making 

such types of calibration methods difficult to be implemented. 

In this research, we introduce a novel calibration method for the 

structured light system requiring only unidirectional patterns. We math- 

ematically proved that for 3D reconstruction, not all parameters in the 

projector ’s projection matrix are required to be known. Therefore, there 

exists one degree-of-freedom (DOF) of redundancy in the conventional 

Zhang and Huang ’s calibration method [28] , which makes patterns in or- 

thogonal directions over-constrained for system calibration. Our method 

takes one DOF away from projector calibration with an innovated least- 

square estimation method, where patterns with only one direction 

are sufficient to support calibration and 3D coordinate computation. 

Experiments demonstrate that our proposed calibration framework can 

achieve 3D shape measurement results comparable to the conventional 

Zhang and Huang ’s calibration method. Particularly, we achieved an 

average accuracy of 0.20 mm with a standard deviation of 0.12 mm eval- 

uated by repeatedly measuring a spherical object with 𝑑 = 147 . 726 mm. 

Section 2 introduces the related theoretical background as well 

as our proposed least-square projector partial calibration method. 

Section 3 will demonstrate the experimental results to show the success 

of our method. Section 4 will summarize the contributions of this 

research. 

2. Principles 

In this section, we first introduce the related theoretical foundations 

such as the basics of pinhole imaging model, phase shifting technique 

and camera calibration. Then, we will introduce our proposed unidi- 

rectional projector ’s least-square partial calibration method and the 

associated computation of 3D reconstruction. 

2.1. Pinhole imaging model 

In a structured light system, both the camera and fringe projector 

respect a well-known pinhole imaging model as shown in Fig. 1 . The 

associated mathematical formulation is described in Eq. (1) 
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In this model, s denotes the scaling factor. r ij and t i are respectively the 

rotation and translation parameters which transform a point ( x w , y w , z w ) 

in the world coordinate system to a point ( x c , y c , z c ) in the camera lens 

coordinate system. f u , f v , 𝛾, ( u 0 , v 0 ) are all intrinsic parameters of the 

imaging lens, where f u , f v are the effective focal lengths along u and v di- 

rections, 𝛾 is the skew factor of u and v axes, and ( u 0 , v 0 ) is the principal 

point on 2D pixel coordinate. To further simplify the model, one can per- 

form matrix multiplication to obtain a combined projection matrix M . 

𝐌 = 

⎡ ⎢ ⎢ ⎣ 
𝑓 𝑢 𝛾 𝑢 0 
0 𝑓 𝑣 𝑣 0 
0 0 1 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
𝑟 11 𝑟 12 𝑟 13 𝑡 1 
𝑟 21 𝑟 22 𝑟 23 𝑡 2 
𝑟 31 𝑟 32 𝑟 33 𝑡 3 

⎤ ⎥ ⎥ ⎦ , (2) 

= 

⎡ ⎢ ⎢ ⎣ 
𝑚 11 𝑚 12 𝑚 13 𝑚 14 
𝑚 21 𝑚 22 𝑚 23 𝑚 24 
𝑚 31 𝑚 32 𝑚 33 𝑚 34 

⎤ ⎥ ⎥ ⎦ , (3) 

The simplified model for the camera and the projector can be 

expressed using the following equations, where superscript c and p 

denote the camera and the projector, respectively. 
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2.2. Camera calibration and target 3D estimation 

The camera calibration has been well established during the past 

several decades. In this research, we adopted the well-known Zhang ’s 

calibration method [6] and the camera calibration software toolbox 

provided by OpenCV. The layout of our calibration target is shown in 

Fig. 2 (a), on which the circle centers serve as feature points. Essentially, 

the camera calibration is composed of two parts: intrinsic and extrinsic 

calibrations. 

The camera intrinsic calibration basically estimates the intrinsic 

parameters ( f u , f v , 𝛾, u 0 , v 0 ). We use the camera to take images of 

different target poses (an example is shown in Fig. 2 (b)). On each 

captured target pose, we extract the feature points (e.g. circle centers) 

for iterative optimization of intrinsic parameters ’ estimation provided 

by OpenCV camera calibration toolbox. After intrinsic calibration, we 

obtained the intrinsic matrix of the camera as ⎡ ⎢ ⎢ ⎣ 
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In this research, we coincide the world coordinate with the camera lens 

coordinate (i.e. x c = x w , y c = y w , z c = z w ): 
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Then, after matrix multiplication, the final projection matrix is obtained 

by 
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