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a b s t r a c t 

Unwrapping and de-noising are key processes for the restoration of phase data in the presence of high speckle 

decorrelation noise. Usually, there are two strategies to deal with noisy wrapped phase: de-noising before un- 

wrapping, or unwrapping before de-noising. This paper aims at comparing the robustness and efficiency of the 

strategies. Six combinations which belong to different strategies are compared in this paper. Ten simulated phase 

maps with progressive noise standard deviations are generated based on the realistic speckle decorrelation noise 

to evaluate the performances of the approaches. The results of simulation show that de-noising with windowed 

Fourier transform filtering before unwrapping with the algorithm based on least-squares and iterations which 

belongs the first strategy has the best accuracy and acceptable computation speed for the restoration of high 

noisy phase data. Application of selected methods to experimental phase data from digital holography validated 

the analysis. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Phase unwrapping [1] is a necessary procedure in many applica- 

tions such as magnetic resonance imaging (MRI) [2–4] , synthetic aper- 

ture radar imaging (SAR) [5–7] , interferometry [8–10] , profilometry 

[11–13] , tomography [14–16] and holography [17–19] . The presence 

of noise makes phase unwrapping very difficult and decreases the accu- 

racy of measurement. In the last decades, many phase unwrapping meth- 

ods have been developed to deal with phase data with noise. Among 

them, quality guided approaches [1,20,21] , Flynn’s minimum discon- 

tinuity approaches [1,22] , minimum L p -norm ( L 0 ) algorithms [1,23] , 

PUMA [24,25] and CPULSI [26] exhibit good performance for unwrap- 

ping phase data with high noise. Usually, these approaches can directly 

unwrap phase data with noise and the acquired unwrapped phase data 

need to be de-noised to restore true phase data [27] . Another processing 

strategy is that de-noising is carried out for wrapped phase before un- 

wrapping and then some fast phase unwrapping algorithms are utilized 

to unwrap the de-noised phase data [28,29] . For the last strategy, de- 

noising is carried out on the wrapped phase data. In order to preserve the 

2 𝜋 phase jump, some filtering methods are carried out on the sine and 

cosine images calculated from the raw phase, and some others are car- 
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ried out on the complex representation. In these de-noising approaches, 

windowed Fourier transform filtering (WFTF), curvelet transform fil- 

tering (CTF) and median filtering (MF) exhibit excellent performance 

for wrapped phase de-noising [30] . In practice, these two strategies are 

both used in many applications. In this paper, we aim at comparing the 

performances of these two strategies. 

This paper is organized as follows: in Section 2 , the theoretical ba- 

sics for the selected phase unwrapping and de-noising approaches are 

described; Section 3 proposes the processing strategies and correspond- 

ing approaches to be compared; Section 4 gives the simulated phase 

maps with speckle decorrelation noise. In Section 5 , we discuss on the 

evaluation of the different approaches. Errors are quantitatively eval- 

uated thanks to the data base constituted with the realistic simulation. 

Section 6 gives an application of these approaches in experimental data. 

Conclusions and perspectives to the study are drawn in Section 7 . 

2. Principles of phase unwrapping and de-noising algorithms 

In our previous studies, we proposed two phase unwrapping algo- 

rithms, phase unwrapping based on least-squares and iterations (PULSI) 

[31] and calibrated phase unwrapping based on least-squares and itera- 
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tions (CPULSI) [26] . We have demonstrated that CPULSI is more robust 

than other phase unwrapping algorithms in the presence of high speckle 

noise and PULSI is the fastest algorithm for unwrapping the noise-free or 

low-noise phase data [26] . In another study [30] , we compared differ- 

ent algorithms for reduction of speckle decorrelation noise. We demon- 

strated that the windowed Fourier transform filtering (WFTF), curvelet 

transform filtering (CTF) and median filtering (MF) are the best ap- 

proaches for phase de-noising. These algorithms are introduced briefly 

in the following. 

2.1. Phase unwrapping based on least-squares and iteration (PULSI) 

In this paper, 𝜑 ij represents the true phase and 𝜓 ij ( ∈[ − 𝜋, + 𝜋], that 

is modulo 2 𝜋) the wrapped phase at the grid point ( i,j ) of a phase map. 

The wrapped phase is extracted from a computation process based on the 

arctangent operator. This process is currently referred as the “wrapping 

operator ”. In this paper, the wrapping operator is symbolized as [1] : 

𝑊 

(
𝜑 𝑖𝑗 

)
= 𝜓 𝑖𝑗 ( 𝑖 = 0 , 1 ..., 𝑀 − 1; 𝑗 = 0 , 1 ...𝑁 − 1 ) , (1) 

where − 𝜋 ≤ 𝜓 ij ≤ 𝜋, M, N are respectively the number of grid points with 

respect to the i and j index. The 1st order spatial wrapped phase deriva- 

tives are defined as: 

Δ𝑥 
𝑖𝑗 
= 𝑊 

(
𝜓 ( 𝑖 +1 ) 𝑗 − 𝜓 𝑖𝑗 

)
( 𝑖 = 0 , 1 ..., 𝑀 − 2; 𝑗 = 0 , 1 ...𝑁 − 1 ) 

Δ𝑥 
𝑖𝑗 
= 0 otherwise 

Δ𝑦 
𝑖𝑗 
= 𝑊 

(
𝜓 𝑖 ( 𝑗+1 ) − 𝜓 𝑖𝑗 

)
( 𝑖 = 0 , 1 ..., 𝑀 − 1; 𝑗 = 0 , 1 ...𝑁 − 2 ) 

Δ𝑦 
𝑖𝑗 
= 0 otherwise , 

(2) 

where Δij 
x and Δij 

y are respectively the difference with respect to the i 
and j indexes. 

In the least-squares sense, the optimal solution 𝜑 ij can be obtained 

from the discrete Poisson equation with Neumann boundary conditions 

[31] : (
𝜑 ( 𝑖 +1 ) 𝑗 − 2 𝜑 𝑖𝑗 + 𝜑 ( 𝑖 −1 ) 𝑗 

)
+ 

(
𝜑 𝑖 ( 𝑗+1 ) − 2 𝜑 𝑖𝑗 + 𝜑 𝑖 ( 𝑗−1 ) 

)
= 𝜌𝑖𝑗, (3) 

where 

𝜌𝑖𝑗 = 

(
Δ𝑥 
𝑖𝑗 
− Δ𝑥 ( 𝑖 −1 ) 𝑗 

)
+ 

(
Δ𝑦 
𝑖𝑗 
− Δ𝑦 

𝑖 ( 𝑗−1 ) 

)
. (4) 

The discrete Poisson equation can be solved by many methods such 

as fast Fourier transform (FFT), discrete cosine transform (DCT) or the 

multi-grid method. In this algorithm, the DCT method is selected to solve 

the least-squares phase unwrapping problem. 

Theoretically, the solution obtained from Eq. (3) is the exact one. 

However, there exist errors between the unwrapped phase and the true 

phase due to noise and to the smoothing performance of the least- 

squares method. In the proposed approach, iterations of unwrapped 

phase errors are utilized to seek more accurate results [31] . 

2.2. Calibrated phase unwrapping based on least-squares and iteration 
(CPULSI) 

In practice, the presence of noise will generate errors between noisy 

and noise-free phase derivatives and makes unwrapping difficult, even 

failed. Here, we proposed a calibration approach in [26] to calibrate the 

phase derivatives exhibiting large errors: 

Δ𝑥 
𝑖𝑗 
= sgn 

(
Δ𝑥 
𝑖𝑗 

)||𝐺 

𝑥 
|| if |||Δ𝑥 𝑖𝑗 ||| ≥ 𝑇 𝑥 

Δ𝑥 
𝑖𝑗 
= Δ𝑥 

𝑖𝑗 
otherwise 

Δ𝑦 
𝑖𝑗 
= sgn 

(
Δ𝑦 
𝑖𝑗 

)|||𝐺 

𝑦 

||| if |||Δ𝑦 𝑖𝑗 ||| ≥ 𝑇 𝑦 

Δ𝑦 
𝑖𝑗 
= Δ𝑦 

𝑖𝑗 
otherwise , 

(5) 

where sgn(…) is the signum function, T x and T y are the thresholds, G x 
and G y are the calibrated phase derivatives. These parameters are de- 

fined as ( E […] means statistical average): ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝑇 𝑥 = 

√ 

𝐸 

[ (
Δ𝑥 
𝑖𝑗 

)2 
] 
− 

(
𝐸 

[
Δ𝑥 
𝑖𝑗 

])2 

𝑇 𝑦 = 

√ 

𝐸 

[ (
Δ𝑦 
𝑖𝑗 

)2 
] 
− 

(
𝐸 

[
Δ𝑦 
𝑖𝑗 

])2 
, (6) 

and, ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝐺 

𝑥 
= 

1 
𝑀𝑁 

𝑖 = 𝑀−1 ∑
𝑖 =0 

𝑗= 𝑁−1 ∑
𝑗=0 

Δ𝑥 
𝑖𝑗 

𝐺 

𝑦 
= 

1 
𝑀𝑁 

𝑖 = 𝑀−1 ∑
𝑖 =0 

𝑗= 𝑁−1 ∑
𝑗=0 

Δ𝑦 
𝑖𝑗 

. (7) 

This calibration approach means that the phase derivatives whose 

values are larger than the standard deviation of phase derivatives are 

replaced by the average value of phase derivatives. 

2.3. Windowed Fourier transform filtering (WFTF) 

Windowed Fourier transform filtering (WFTF) [29,32] is a method 

which process phase maps locally, or block by block. 

For the wrapped phase 𝜓( x, y ), we can convert it to exponential 

complex field as 

𝑓 ( 𝑥, 𝑦 ) = exp [ 𝑗𝜓( 𝑥, 𝑦 )] (8) 

where 𝑗 = 

√
−1 . Subsequently, the signal f ( x, y ) is transformed into its 

spectrum by a windowed Fourier transform (WFT). The WFT spectrum 

is thresholded in order to remove noise: the spectrum is set to zero if its 

amplitude is less than a preset threshold. The altered spectrum then un- 

dergoes an inverse windowed Fourier transform (IWFT) to reconstruct a 

filtered exponential phase field 𝑓 ( 𝑥, 𝑦 ) . The whole process can be written 

as 

𝑓 ( 𝑥, 𝑦 ) = IWFT ( WFT (f (x , y))) (9) 

Finally, the filtered phase can be given by the phase angle of 𝑓 ( 𝑥, 𝑦 ) 
as 

�̄� ( 𝑥, 𝑦 ) = arg ( 𝑓 ( 𝑥, 𝑦 )) (10) 

where arg(z) returns the principle argument ( ∈[ − 𝜋, + 𝜋]) for each ele- 

ment of complex array z. 

From the above algorithm, we can see that WFTF can only give the 

principle values of phase wrapped in the range [- 𝜋, 𝜋]. So WFTF is 

adapted to de-noise wrapped phase data. If we use this method to de- 

noise unwrapped phase, we can only acquire the wrapped results. In 

order to overcome the limitations of de-noising unwrapped phase with 

WFTF, we apply wrapping operator on the noisy unwrapped phase and 

subtract its WFTF values to obtain the filtered noise. Then, the de-noised 

unwrapped phase can be obtained by subtracting noise from noisy un- 

wrapped phase. 

2.4. Curvelet transform filtering (CTF) 

Curvelet transform is based on wavelet transform and ridgelet trans- 

form to overcome the limitations of wavelet transform in de-noising the 

data with anisotropic features [33] . It is a multiscale geometric trans- 

form. The main idea of discrete curvelet transform is to decompose the 

signal into a set of wavelet bands and to analyze each band by a local 

ridgelet transform with a different block size for each scale level. The 

filtering in the curvelet domain is realized by performing curvelet trans- 

form to noisy signal, and using hard-thresholding rule to obtain filtered 

curvelet coefficients. Then the inverse curvelet transform is performed 

to restore the de-noised signal [33] . 

Curvelet transform filtering can be directly applied on the continu- 

ous unwrapped phase data. However, for the wrapped phase curvelet 

transform filtering will blur the phase jump. So we perform curvelet 

transform filtering on the sine and cosine of the wrapped phase and 

then calculate the de-noised wrapped phase from them. 

2.5. Median filtering (MF) 

Median filtering is one of the most commonly spatial filtering. It uses 

median value in the kernel to substitute the value of center of the kernel 
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