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a b s t r a c t 

The virtual fields method (VFM) is generally used with two-dimensional digital image correlation (2D-DIC) or 
grid method (GM) for identifying constitutive parameters. However, when small out-of-plane translation/rotation 
occurs to the test specimen, 2D-DIC and GM are prone to yield inaccurate measurements, which further lessen the 
accuracy of the parameter identification using VFM. In this work, an easy-to-implement but effective “special ”
stereo-DIC (SS-DIC) method is proposed for accuracy-enhanced VFM identification. The SS-DIC can not only de- 
liver accurate deformation measurement without being affected by unavoidable out-of-plane movement/rotation 
of a test specimen, but can also ensure evenly distributed calculation data in space, which leads to simple data 
processing. Based on the accurate kinematics fields with evenly distributed measured points determined by SS- 
DIC method, constitutive parameters can be identified by VFM with enhanced accuracy. Uniaxial tensile tests of 
a perforated aluminum plate and pure shear tests of a prismatic aluminum specimen verified the effectiveness 
and accuracy of the proposed method. Experimental results show that the constitutive parameters identified by 
VFM using SS-DIC are more accurate and stable than those identified by VFM using 2D-DIC. It is suggested that 
the proposed SS-DIC can be used as a standard measuring tool for mechanical identification using VFM. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The Virtual Fields Method (VFM), proposed and advocated by Gré- 
diac and Pierron [1–7] , is an inverse method for identifying the parame- 
ters governing a constitutive equation. Based on the principle of virtual 
work, VFM can be used to estimate multiple constitutive parameters 
from a test specimen in a single test. Compared with the classical finite 
element model updating method (FEMU), the efficiency advantage of 
the VFM is evident, since it does not require performing heavy iterative 
finite element simulations of the test to find constitutive parameters that 
achieve the best match between computed and actual measurements. In 
addition, using suitable virtual fields causes the VFM to be insensitive 
to boundary conditions that usually affect the stress fields. 

In earlier studies regarding VFM, the grid method (GM) was most 
commonly used to determine the full-field deformation of test speci- 
mens. However, the following inherent drawbacks of the GM limit the 
prevalence of VFM [8–11] . First, it may be tricky to fabricate and trans- 
fer good-quality grid pattern to the surface of a test specimen. Second, 
the CCD array and the grid should be carefully aligned to avoid the 
aliasing phenomenon in acquired grid images. In the last decades, the 
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rapid development and popularity of digital image correlation (DIC) 
techniques [12] facilitates the easier implementation and wider accep- 
tance of the VFM. With its outstanding advantages of simple optical 
arrangement and easy specimen preparation, low requirement on ex- 
perimental environment, and wide applicability, DIC serves as an easy- 
to-implement and versatile full-field measurement technique for VFM. 
Nowadays, the DIC-based VFM has been widely used to identify con- 
stitutive parameters of various materials, including but not limited to 
metals [13–15] , polymeric foams [16,17] and composites [18,19] . Re- 
cently, in combination with DIC techniques, VFM has also been used 
to identify elasticity parameters of graphite [20] , 304-steel [21] under 
high temperature and biological materials [22] . Interestingly, an exten- 
sive comparison between VFM and FEMU was carried out in the latter. 
It was observed that VFM was 125 times faster and more robust than 
FEMU. 

When using VFM, full-field kinematic measurements are used with 
the applied force amplitude as the only experimental data input for 
subsequent identification. The accuracy of the identified constitutive 
parameters therefore heavily depends on the accuracy of the full-field 
deformation measurements considered as input data. In the literature, 
2D-DIC is used in most of the investigations and applications of DIC- 
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based VFM to measure in-plane full-field deformations [18–20] . Strictly 
speaking, 2D-DIC using a single camera is limited to in-plane displace- 
ment/strain measurement of planar surfaces. In this case, the mea- 
sured kinematic fields are however impacted by the out-of-plane mo- 
tion/rotation of the specimen during loading. Furthermore, lens dis- 
tortion, which has an adverse effect on the measured strains, would 
also lessen the accuracy of constitutive parameters identification us- 
ing VFM [23–25] . Of course, a high-accuracy 2D-DIC measuring system 

with high-quality bilateral telecentric lenses can be used. Such a system 

is insensitive to out-of-plane motion of test object within its telecentric 
depth. It also demonstrates negligible lens distortion [26] . However, a 
high-quality bilateral telecentric lens is very expensive and with limited 
applicability, since its object distance shall range within the telecentric 
depth, and the field of view and magnification are fixed. Recently, Wang 
et al. [16,17] employed two cameras to measure the heterogeneous de- 
formation fields on the two back-to-back specimen planes simultane- 
ously. In this case, the effect of out-of-plane movements can be elimi- 
nated by averaging measured values from two cameras. Nevertheless, 
using two separate 2D-DIC systems bring additional difficulties, such as 
precise synchronization of the two systems and precise matching of the 
same measurement points. 

Compared with 2D-DIC, stereo-digital image correlation (stereo-DIC) 
can provide more accurate deformation measurements without being af- 
fected by out-of-plane movements. Therefore, VFM, in combination with 
stereo-DIC, is expected to generate more accurate identification of con- 
stitutive parameters. However, in using regular stereo-DIC for full-field 
deformation measurements, the region of interest (ROI) and grid step 
are defined in the reference image captured by the left camera. Since 
the optical axis of the left camera is generally oblique to the test spec- 
imen surface (i.e., the sensor plane of the left camera is not parallel 
to the specimen surface), the calculation points are non-uniformly dis- 
tributed on the specimen surface. Naturally, non-uniformly distributed 
points within the specified ROI increases the complexity in calculating 
the internal virtual work when applying the VFM. If the presence of non- 
uniformly distributed deformation data is neglected, the internal virtual 
work is estimated inaccurately. As a result, the accuracy of the consti- 
tutive parameters identified by VFM is deteriorated. Some researchers 
[14,15] employed the finite element method (with C° continuity) to 
eliminate the effect of non-uniformly distributed measured points on 
the specimen surface, but both the finite element calculation and data 
smoothing process dramatically increase the computational complexity. 

In this paper, a special stereo-DIC (SS-DIC) method is proposed for 
accuracy-enhanced VFM identification. In the proposed SS-DIC, the sen- 
sor plane of the left camera is carefully aligned to be parallel to the 
specimen surface (just like any regular 2D-DIC system), which ensures 
spatially homogeneous measurement points on the surface of the test 
planar specimen. The right camera is inclined with respect to the object 
surface to switch from 2D to 3D deformation measurement in combina- 
tion with the left camera. Using the SS-DIC, VFM is fed by high-accuracy 
full-field deformation measurement, which is not deteriorated by out- 
of-plane motion. Also, based on the spatially homogeneous deformation 
data on the specimen surface, VFM identification can be readily imple- 
mented. In addition, the method can be directly used to compare the 
accuracy of 2D-DIC and stereo-DIC measurements by using only the left 
camera instead of both cameras. In order to verify the effectiveness of 
the proposed SS-DIC-based VFM method, tensile tests on a perforated 
aluminum specimen and pure shear tests on a prismatic aluminum spec- 
imen were carried out. The identified constitutive parameters are also 
compared with those obtained with 2D-DIC-based VFM. 

2. The virtual fields method and special stereo-DIC 

2.1. The virtual fields method 

The VFM is based on the principle of virtual work. For a continuous 
deformable solid with any shape, an integral form of the mechanical 

equilibrium equation can be written as follows: 

− ∫𝑉 𝛔 ∶ 𝛆 ∗ d 𝑉 + ∫𝜕𝑉 𝐓 ⋅ 𝐮 ∗ d 𝐴 + ∫𝑉 𝐛 ⋅ 𝐮 
∗ d 𝑉 = ∫𝑉 𝜌𝒂 ⋅ 𝐮 

∗ d 𝑉 ∀𝐮 ∗ KA 

(1) 

where V is the volume of the studied part of the specimen, 𝜕V is the solid 
boundary where the external force is applied, 𝝈 is the stress tensor, u 

∗ 

is the virtual displacement vector, 𝜺 ∗ is the corresponding virtual strain 
tensor, T̄ is the external surface force density applied on the solid bound- 
ary, b is the volume force, 𝜌 is the mass density, a is the acceleration 
vector, KA represents the kinematically admissible condition. 

The virtual displacement u 

∗ shall be continuous and must satisfy the 
kinematically admissible condition. In the static or quasi-static cases, 
the inertial force can be ignored. In addition, the effect of the volume 
force is negligible compared to that of the external surface force, so the 
equation for the principle of virtual work reduces to 

− ∫𝑉 𝛔 ∶ 𝛆 ∗ d 𝑉 + ∫𝜕𝑉 𝐓 ⋅ 𝐮 ∗ d 𝐴 = 0 ∀𝐮 ∗ KA (2) 

In the above equation, the stress tensor 𝝈 cannot be measured di- 
rectly by experiments. However, the stress can be expressed as a func- 
tion of the strain tensor and constitutive parameters. This equation can 
be used with different and independent kinematically admissible fields 
u 

∗ to identify the parameters governing a various type of constitutive 
models such as linear, non-linear elasticity and elasto-plasticity. More 
details can be found in Ref [2] . 

In this paper, the linear-elasticity model was considered to easily 
estimate the improvement brought about by using SS-DIC to measure 
the deformation fields. Indeed, the parameters identified with the VFM 

can be compared in this case to the Young’s modulus and the Poisson’s 
ratio obtained by standard tests such as strain gauges. For an in-plane 
problem and isotropic materials, the linear relation between stress and 
strain can be expressed as follows: 
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The components of the stress tensor in Eq. (2) can be rewritten as a 
function of the components of the strain tensor using Eq. (3) . Thus 
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where the left part of Eq. (3) is the internal virtual work, and the right 
part the external virtual work. Q xx and Q xy are the unknown parameters, 
S is the area of the selected region and t is the thickness of the specimen. 
In practice, �̄� is deduced from a concentrated force measured by a load 
cell. The strain components ɛ x , ɛ y and 𝛾xy are measured on the specimen 
surface using a full-field optical technique, here SS-DIC. 

In practice, the measured strain fields are composed of series of dis- 
crete data points. Each data point represents the local deformation of a 
small element. In other words, the measured strain fields can be repre- 
sented as numerical 2D matrices of m ×n points, and the virtual ones 
have the same dimension. Consequently, Eq. (4) can be expressed as 
follows: 

𝑄 𝑥𝑥 

m ∑
i=1 

n ∑
j=1 

(
𝜀 𝑥 𝜀 

∗ 
𝑥 
+ 𝜀 𝑦 𝜀 

∗ 
𝑥 
+ 

1 
2 
𝛾𝑥𝑦 𝛾

∗ 
𝑥𝑦 

)
S ij 

+ 𝑄 𝑥 y 

m ∑
i=1 

n ∑
j=1 

(
𝜀 𝑥 𝜀 

∗ 
𝑥 
+ 𝜀 𝑦 𝜀 

∗ 
𝑥 
− 

1 
2 
𝛾𝑥𝑦 𝛾

∗ 
𝑥𝑦 

)
S ij = 

1 
𝑡 ∫𝜕𝑉 𝐓 ⋅ 𝐮 ∗ d 𝐴 (5) 

where the subscript ij ( i, j represent the location in the matrix) after ɛ x , 
ɛ y , 𝛾xy and the corresponding virtual strain components are removed for 
notation brevity; S ij is the area of each element. 
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