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a b s t r a c t 

The recent tremendous proliferation of color imaging applications has been accompanied by growing research 
in data encryption to secure color images against adversary attacks. While recent color image encryption tech- 
niques perform reasonably well, they still exhibit vulnerabilities and deficiencies in terms of statistical security 
measures due to image data redundancy and inherent weaknesses. This paper proposes two encryption algo- 
rithms that largely treat these deficiencies and boost the security strength through novel integration of the ran- 
dom fractional Fourier transforms, phase retrieval algorithms, as well as chaotic scrambling and diffusion. We 
show through detailed experiments and statistical analysis that the proposed enhancements significantly improve 
security measures and immunity to attacks. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Big amounts of color image data are generated and transmitted ev- 
eryday in different applications in science, technology [1–3] , medicine 
[4–6] , and education [7–9] . Adversary attacks to recognize the content 
of color images impose serious threats that motivated research in color 
image encryption [10–15] . Color image encryption methods typically in- 
clude one or more of basic encryption modules such as data scrambling, 
chaotic diffusion, orthogonal transforms, phase retrieval algorithms, and 
color space representations. First of all, data scrambling [16–19] could 
be viewed as the simplest and most intuitive encryption technique. In 
such a technique, one applies a permutation scheme to image pixel lo- 
cations. The permutation is set as the encryption key and the inverse 
of this permutation is used for decryption. Moreover, discrete chaotic 
maps are extensively implemented in image and video processing [20–
24] . These maps are based on the generation of chaotic sequences that 
can be used to create robust scrambling schemes. However, image en- 
cryption based on chaotic maps only showed weak immunity against 
both ciphertext-only and chosen plaintext attacks [25,26] . In addition, 
not only are chaos-based encryption schemes insecure, but also general 
permutation-based encryption schemes are insecure as is proved in [27] . 
Moreover, statistical encryption measures, in particular entropy, UACI, 
and NPCR, show the lack of security in permutation-based encryption 
approaches [28] . 
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As a matter of fact, with modern computers and fast algorithms, 
permutation-only encryption methods are not expected to show suffi- 
cient security strength for multimedia security. For this reason, orthog- 
onal transforms, in particular the discrete fractional Fourier transform, 
have been applied in image encryption to increase security strength 
[29,30] . While the orthogonal-transform approach, to the best of our 
knowledge, has a reasonable immunity against cipher text and chosen 
plain text attacks, it has weak results under statistical analysis as is 
shown in Section 6 . Consequently, researchers have been adding more 
encryption keys to chaotic and permutation scrambling [31] . In most 
cases, orthogonal transforms such as discrete fractional Fourier trans- 
forms (DFrFT) [32–34] , discrete fractional cosine and Hartley trans- 
forms [35,36] , and discrete wavelet transforms [37,38] are merged with 
the implementation of chaotic scrambling or joint transform correlation 
[39,40] to reach satisfactory security strength. As we have mentioned, 
such a combined approach resolves security weaknesses against cipher- 
text and chosen plaintext attacks, but it still shows weaknesses [41] with 
respect to NPCR and UACI measures [28] . 

Several techniques have been proposed to tackle the aforementioned 
deficiencies and improve security and statistical indicators. For example, 
Sam et al. [42] have created enhanced chaotic orbits via three logistic 
maps together with XORing and a diffusion procedure. The technique 
gives good NPCR, UACI, and histogram indicators. Similarly, Li and Liu 
[43] implemented a family of XORing operations together with the use 
of 2D Hénon and Chebyshev maps. Moreover, discrete fractional trans- 
forms have been combined with chaotic scrambling to achieve better 
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security strength [41,44] . However, as is indicated in the statistical anal- 
ysis we carried out in Section 3 , the technique of [44] fails against the 
UACI, NPCR, and entropy measures. In [41] , the authors applied an ad- 
ditional phase retrieval algorithm that enhanced some of the statistical 
measures. Nevertheless, some measures are still not satisfactory. 

In this paper, we introduce two encryption frameworks that apply 
the recently defined randomized transforms of [45] in image encryp- 
tion together with chaotic permutation, chaotic diffusion and phase re- 
trieval. Experimental results indicate strong encryption performance in 
comparison to existing models. The aim of the proposed framework in 
this context is not just to merge the four mentioned techniques (orthog- 
onal transforms, phase retrieval, chaotic permutations and diffusion) to 
produce a strong encryption scheme, but also to enhance the imple- 
mentation of the orthogonal transforms and the chaotic scrambling and 
diffusion stages. As for the orthogonal transforms, we apply the random- 
ized multi-parameter transforms of [45] , and for scrambling, we exploit 
coupled and non-coupled logistic maps, avoiding stability islands [46] . 
The chaotic diffusion, which is linear, is implemented on the phase only. 

The rest of the paper is organized as follows. In Section 2 , we briefly 
introduce the encryption tools implemented in the paper. Section 3 high- 
lights a couple of state-of-the-art encryption techniques and their statis- 
tical encryption deficiencies. Section 4 details our proposed encryption 
schemes whose block diagrams are shown in Figs. 8 and 10 . Sections 5 
and 6 , respectively investigate sensitivity to encryption keys, statisti- 
cal measures, and immunity analysis. Conclusions are summarized in 
Section 7 . 

2. Encryption tools 

2.1. Randomized transforms 

Let 𝜆𝑘 = 𝑒 
𝑗𝑘 

𝜋
2 , 𝑘 = 0 , … , 𝑁 − 1 , where 𝑁 ∈ ℕ is fixed. The matrix of 

the discrete fractional Fourier transform (DFrFT) of order 𝛼 ∈ ℝ is de- 
fined by [47] 

𝐹 𝛼[ 𝑚, 𝑛 ] = 

𝑁−1 ∑
𝑘 =0 

𝑝 𝑘 ( 𝑚 ) 
(
𝜆𝑘 

)𝛼
𝑝 𝑘 ( 𝑛 ) , (1) 

where 0 ≤ 𝑛, 𝑚 ≤ 𝑁 − 1 , and { 𝑝 𝑘 ( . )} 𝑁−1 
𝑘 =0 is an arbitrary orthonormal set 

of eigenvectors of the discrete Fourier transform (DFT). Since such an 
orthonormal basis (ONB) of eigenvectors is not unique, there has been 
established several techniques to compute such an ONB. In a novel clas- 
sical piece of formal work [47] , an ONB { 𝑢 𝑘 ( . )} 𝑁−1 

𝑘 =0 is computed via the 
commutation of the DFT matrix F ≔ F 1 and the matrix S defined by 

𝑆 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−2 1 ⋯ 1 
1 2 cos ( 𝜔 ) − 4 ⋯ 0 
0 1 ⋯ 0 
⋮ ⋮ ⋱ ⋮ 
1 0 ⋯ 2 cos (( 𝑁 − 1) 𝜔 ) − 4 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
, (2) 

where 𝜔 = 

2 𝜋
𝑁 

. This leads to a DFrFT matrix 

𝐹 𝛼[ 𝑚, 𝑛 ] = 

𝑁−1 ∑
𝑘 =0 

𝑢 𝑘 ( 𝑚 ) 𝜆𝛼
𝑘 
𝑢 𝑘 ( 𝑛 ) , (3) 

where 𝜆𝛼
𝑘 
= 𝑒 

𝑗𝑘𝛼
𝜋
2 , 𝑘 = 0 , … , 𝑁 − 1 . As we have previously indicated, the 

DFrFT has been applied in image encryption [30] , where NPCR, UACI, 
and entropy indicators show weak encryption strength against the ideal 
encryption standards of [28] . This stimulated research towards the 
derivation of randomized transforms [48–50] . 

In particular, Annaby et al. [45] introduced four variants of random- 
ized discrete Fourier-type transforms by replacing the set of eigenvec- 
tors { 𝑢 𝑘 } 𝑁−1 

𝑘 =0 and the set of eigenvalues { 𝜆𝛼
𝑘 
} 𝑁−1 
𝑘 =0 by randomized multi- 

parameter ones. In this paper, we use only one of these variants, namely, 
the multi-parameter discrete fractional random transform (MDFrRT). 
The implementation using other randomized transform variants can be 

carried out similarly, taking into account the computational and sta- 
tistical aspects indicated in [45] . The MDFrRT transform is defined as 

follows. Let A be an N ×N random matrix and 
→
𝑟 = ( 𝑟 0 , … , 𝑟 𝑁−1 ) ∈ ℝ 

𝑁 be 
a random vector. Let { 𝑣 𝑘 ( . )} 𝑁−1 

𝑘 =0 be an ONB of eigenvectors of the Her- 
mitian matrix AA † , whose existence is guaranteed in [51] . The matrix 
of the MDFrRT transform is defined as 

𝑅 

𝛼

𝐴, 
→
𝑟 
[ 𝑚, 𝑛 ] = 

𝑁−1 ∑
𝑘 =0 

𝑣 𝑘 ( 𝑚 ) 𝑒 𝜋𝑗𝛼
𝑟 𝑘 
2 𝑣 𝑘 ( 𝑛 ) , (4) 

where the parameter 𝛼 ∈ ℝ is chosen arbitrarily. This transform is priv- 
ileged by having three strong keys: the fractional order 𝛼, the random 

matrix A , and the random vector 
→
𝑟 . 

2.2. The HSI color model 

The HSI color model decomposes a color into three independent com- 
ponents of Hue, Saturation, and Intensity. This model is an ideal tool 
for creating image-processing techniques based on natural and intuitive 
color descriptions [52] . Images in the RGB color space can be converted 
into the HSI color space and vice versa. The model implemented here is 
that introduced in [52] as follows: 

• An RGB image can be converted into an HSI image as follows. The 
hue H component is given by 

𝐻 = 

{ 

𝜃, if 𝐵 ≤ 𝐺, 

360 ◦ − 𝜃, if 𝐵 > 𝐺, 
(5) 

with 

𝜃 = cos −1 
( 

0 . 5[ ( 𝑅 − 𝐺) + ( 𝑅 − 𝐵)] 

[ ( 𝑅 − 𝐺) 2 + ( 𝑅 − 𝐵)( 𝐺 − 𝐵)] 
1 
2 

) 

. 

The saturation S and intensity I components are given by 

𝑆 = 1 − 

3 
( 𝑅 + 𝐺 + 𝐵) 

[ min { 𝑅, 𝐺, 𝐵}] , 

𝐼 = 

1 
3 
( 𝑅 + 𝐺 + 𝐵) . (6) 

• Conversely, an HSI image representation can be converted into the 
RGB space depending on the range of the hue H values as follows: 
1. For the RG sector, where 0°≤ H < 120°, 

𝑅 = 𝐼 

( 

1 + 

𝑆 cos ( 𝐻) 
cos (60 ◦ − 𝐻) 

) 

, 

𝐺 = 3 𝐼 − ( 𝑅 + 𝐵) , 

𝐵 = 𝐼(1 − 𝑆) . (7) 

2. For the GB sector where 120°≤ H < 240°, we offset the hue values 
to be 𝐻 → 𝐻 − 120 ◦, then define the RGB components by: 
𝑅 = 𝐼(1 − 𝑆) , 

𝐺 = 𝐼 

( 

1 + 

𝑆 cos ( 𝐻) 
cos (60 ◦ − 𝐻) 

) 

, 

𝐵 = 3 𝐼 − ( 𝑅 + 𝐺) . (8) 

3. For the BR sector where 240°≤ H ≤ 360°, we offset the hue values 
𝐻 → 𝐻 − 240 ◦, then define the RGB components as: 
𝑅 = 3 𝐼 − ( 𝐺 + 𝐵) , 

𝐺 = 𝐼(1 − 𝑆) , 

𝐵 = 𝐼 

( 

1 + 

𝑆 cos ( 𝐻) 
cos (60 ◦ − 𝐻) 

) 

. (9) 

2.3. Chaotic data scrambling 

Data scrambling can be effectively carried out using chaotic mapping 
methods [46,53] , particularly, the logistic map. A chaotic sequence can 
be generated by selecting a specific chaotic bifurcation parameter 𝜇 and 
initial point x 0 of the system 

𝑥 𝑛 +1 = 𝜇𝑥 𝑛 (1 − 𝑥 𝑛 ) , 0 < 𝜇 < 4 , 𝑥 0 ∈ [0 , 1] . (10) 
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