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Abstract: A Bayesian algorithm is developed for estimating parameters in nonlinear stochastic 

differential equation (SDE) models. The proposed algorithm uses prior information about parameters and 

builds on the approximate expectation maximization (AEM) algorithm (Karimi and McAuley, 2014a). A 

nonlinear continuous stirred tank reactor (CSTR) model is used to compare the effectiveness of the 

Bayesian algorithm to that of the AEM algorithm. For the CSTR example studied, the proposed method 

provides more accurate parameter estimates, especially for small data sets. 
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1. INTRODUCTION 

Fundamental dynamic models are derived using material, 

energy and momentum balances. Stochastic terms are 

sometimes introduced on the right-hand sides of the resulting 

differential equations to account for disturbances and model 

mismatch (Jones et al., 1989). The resulting equations are 

called stochastic differential equations (SDEs). In this paper, 

we consider Multi-Input Multi-Output (MIMO) nonlinear 

SDE models of the form:  
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where X
Rx  is the vector of state variables, t is time, 

XPUX
RRRR :f  is a vector of nonlinear functions, 

U
Ru  is the vector of input variables and P

Rθ  is the 

vector of unknown model parameters. 
X

Rt )(η  is a 

continuous zero-mean stationary Gaussian white-noise 

process with covariance matrix E{η(t1)η(t2)}=Q δ(t2-t1), 

where Q is the corresponding diagonal power spectral density 

function : 
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The matrix of power spectral density function sometimes 

referred to as the process disturbance intensity matrix 

(Varziri et al., 2008). δ(.) is the Dirac delta function and 
X

R0x  is a vector of initial conditions for the state 

variables. Some of these initial conditions may be known to 

the modeler and others may be unknown values that require 

estimation along with the model parameters. 
Y

Ry  is the 

vector of measured output variables. The times at which 

measurements are available for the rth response (r=1…Y) are 

denoted by tm r,j (j = 1…Nr) where Nr is the number of 

measurements for the rth response. 
Y

Rg is a vector of 

nonlinear mappings and Y
Rε  is a vector of zero-mean 

random variables. If the measurement errors are independent, 

the corresponding covariance matrix has the following form: 
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Consider the vector Ym that contains the stacked measured 

value T
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and 
T

,1,,111,11 )]()()()([
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which contains the stacked values of the state variables at the 

measurement times. Um and εm are corresponding vectors for 

the input variables and random errors, respectively so that:  
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where G is G=[g, …, g]
T

1×NY. The index m for a variable 

indicates that the values of that variable are taken at 

measurement times. The existence of a solution of an SDE is 

ensured when globally Lipschitz, linear growth and 

boundedness conditions are satisfied (Liptser and Bishwal, 

2000). Since )(tη does not have a simple mathematical 

interpretation, SDEs are often written in the differential form 

(Liptser and Shiryaev, 2000):  
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predictive control (McLean and McAuley, 2012). Therefore, 

accurate and reliable parameter estimation techniques for 

SDE models are beneficial for chemical engineers. Maximum 

likelihood estimation (MLE) methods are commonly used to 
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asymptotic efficiency and consistency (Casella and Berger, 

1990).  
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The numerator on the right-hand side is the product of the 

probability density function of the measurements given 

parameters )|( ζYmp and the prior distribution of the 

parameters )(ζp , which contains knowledge about the 

possible values of ζ . The likelihood function of the 
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The denominator in (5), which ensures that the posterior 
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model parameters. When a large quantity of informative data 

is available, the posterior probability will be dominated by 

the likelihood function In nonlinear models with unmeasured 

states, evaluation of the posterior density function is a major 

challenge requiring calculation of complicated integrals of 

probability density functions (Jang and Gopaluni, 2011; 

Ljung, 1999). Computationally intensive Markov Chain 

Monte Carlo (MCMC) algorithms (also referred to as particle 

filtering), which require very few assumptions about the 

posterior density function, have been used to compute these 

integrals (Coleman and Block, 2006; Jang and Gopaluni, 

2011; Robert and Casella, 1999). MCMC methods are used 

to approximate the posterior densities in SDE models 

(Geweke and Tanizaki, 2001; Jang and Gopaluni, 2011; 

Ninness and Henriksen, 2010), in mixed models (Gelman, 

2006) and in ordinary differential equation models (Coleman 

and Block, 2006). MCMC methods are particularly 

computationally demanding when the number of states and 

parameters is large (Gopaluni, 2010). Benefits and drawbacks 

of MCMC methods are summarized by Chen et al. (2004).   

In this article a computationally efficient algorithm is 

proposed for estimating parameters and states in nonlinear 

SDE models when the modeler has some prior knowledge 

about some of the parameters. This algorithm is developed 

using a Bayesian approach. Recently, we developed three 

approximate MLE algorithms for estimating parameters in 

nonlinear SDE models (Karimi and McAuley, 2013; Karimi 

and McAuley, 2014a; Karimi and McAuley, 2014b). These 

MLE-based methods, which do not require prior knowledge 

about parameters, are computationally efficient, but can 

provide poor parameter estimates when data sets are small.  

Here, we develop an approximate Bayesian expectation 

maximization (ABEM) algorithm that builds on our previous 

approximate expectation maximization (AEM) method 

(Karimi and McAuley, 2014a). The inclusion of prior 

information about parameters in the resulting objective 

function leads to improved parameter estimates, especially 

when data are sparse or noisy. First, an analytical expression 

for the posterior density function is derived and used to 

develop a suitable objective function for parameter 

estimation. The proposed algorithm is then tested using a 

CSTR model and results are compared with those from the 

AEM method. It is shown that the proposed ABEM method 

provides more accurate parameter estimates for the example 

studied.   

2. DEVELOPMENT OF THE APPROXIMATE BAYESIAN 

EXPECTATION MAXIMIZATION ALGORITHM 

In Bayesian approaches, the posterior density function 

)|( mp Yζ  is maximized to obtain the parameter estimates. 

Maximizing )|( mp Yζ  is equal to minimizing -ln )|( mp Yζ . 

When developing the AEM methodology, we showed that 

(Karimi and McAuley, 2014a): 

IFAC ADCHEM 2015
June 7-10, 2015. Whistler, BC, Canada

148



Download English Version:

https://daneshyari.com/en/article/713203

Download Persian Version:

https://daneshyari.com/article/713203

Daneshyari.com

https://daneshyari.com/en/article/713203
https://daneshyari.com/article/713203
https://daneshyari.com

