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Abstract: This paper considers the optimal strategies for constrained linear state estimation.
Prior information for estimating state variables is often available in the form of inequality
constraints on states. In the latest developments of optimal state estimation theory consideration
of state constraints has been often neglected since constraints do not fit easily in the structure of
the optimal filter, for example, the issue of state constraints being present has to be addressed
adequately, for example nonnegativity of concentration. In order to address this issue and
to extend previous developments on the accuracy of state estimation, this work develops the
constrained optimal state estimation for finite-dimensional systems. Finally, a numerical example

illustrating the proposed method is presented.
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1. INTRODUCTION

In finite-dimensional systems, the Kalman filter is the
standard choice for estimating the state of a linear system
when the measurements are noisy and the process dis-
turbances are unmeasured. Another important estimation
technique, given by moving horizon method which is devel-
oped by Muske and Rawlings (1993), plays an important
role in finite-dimensional systems estimation. Often in
the practice, the additional information for estimation is
available in the form of inequality constraints on states. In
order to embed the constraints into the state estimation
framework and improve the accuracy of state estimation,
many contributions have been made (see Muske et al.
(1993), Simon and Chia (2002), Simon (2010), and Rao
et al. (2001)).

Thomas et al. Yu et al. (1974) investigated the opti-
mal state estimation framework for infinite-dimensional
systems by utilizing the framework of the optimal control
theory. Along the same time, Ray (1981) summarized and
applied this framework in both lumped parameter and
distributed parameter systems (see Ajinkya et al. (1975);
Soliman and Ray (1979)). The optimal state estimation
technique developed by Thomas and Ray was formulated
by utilizing variational method for continuous systems
and the resulting estimation formulations are continuous
time functions. In this paper, motivated by Ray (1981),
we extended the framework of continuous optimal state
estimation technique to deal with the state estimation
problem when the state constraints for continuous linear
time-invariant system are explicitly included.

Motivated by consideration above, this paper focus-
es on the development of the constrained optimal state
estimation framework. Contrary to the Kalman filtering
and moving horizon techniques, this paper deals with the
optimal constrained state estimation problem based on the
continuous systems using the variational method and the
final state estimation formulation which is given as a con-

tinuous time function. The contribution of this paper is its
novel methodology which first converts the optimal state
estimation problem with inequality constraints into the
problem with equality constraints and embeds the equality
constraints in the optimal state estimation framework. The
derivation of a state estimation formulation is demon-
strated in Section 2. In Section 3, a numerical example,
via simulation, shows that the proposed state estimation
framework in this paper indeed improves the accuracy of
state estimation compared with the unconstrained optimal
state estimation framework (Ray’s method). Finally, the
conclusion is presented in Section 4.

2. MODEL DESCRIPTION

Let us consider the following linear time-invariant system:
&(t) = Ax(t) + Bu(t) + GE(t), z(0) = xq (1)
y(t) = Cx(t) +n(t) (2)

where z(t) € R", u(t) € R, y(t) € R are state, input and
output, respectively and A € R"*" B € R"*1 G € R"*1,
and C € R are state, input, disturbance and output
matrices, respectively. £(t) and 7(t) are the zero-mean
random processes with the following stochastic properties:

E(g(t) = 0, B(E()8(r)" 2=
E(n(t)) = 0, E((t)n(r)") =
E(E(tn(r)7) = 0

R™Y(t)s(t —7)
Q H(t)d(t —7) (3)

The state x(¢) in the system (1) is subjected to the
following constraint:

Xmin S Fl’(t) S Jymax (4)

where I' € R1X" is a vector.
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2.1 State Estimation Formulation

In this section, based on the system (1)-(2), we formulate
the constrained optimal state estimation problem as the
solution to the following quadratic problem:

min J(2(1)) ()

where the objective function is defined by:

—_

[(0) — xo]" Py ' [#(0) — o]

subject to constraint:
AT < TR (t) < Amex (6)

where (6) is consistent with (4), ¢7 is terminal time, &(t) is
the estimation of the state z(t), and R(¢), Q(t) are chosen
in (3) and P, is defined by:

E([#(0) - z0] [#(0) — o] ") = Py (7)

We shall now define U (t) = #(t) — A#(t) — Bu(t) to convert
the optimal state estimation problem to its dual optimal
control problem:

min J(i(0) (8)

where the objective function is defined by:

(y(t) = C&(1))" Q (y(t) — Ca (1))} dt

subject to constraints:
Z(t) = Az(t) + Bu(t) + U(t), #(0) unspecified  (9)
Xmin S F.%(f) S Jymax (1())

One may solve the optimization problem (8), (9) and (10)
by realizing the following two algorithmic steps:

P.1) One solves the optimization problem (8) and (9) with-
out the constraint (10). Then, inspect if the results
satisfy the constraint given by (10). If the results
satisfy the constraint, then one finishes the estimation
work at the current estimation time instant. Other-
wise, we proceed to step (P.2), in other words, the
constraint is not active.

P.2) In this step, one inspects which part of the constraint
(10) is not satisfied. In the case that the estimation
results do not satisfy A™" < T'Z(¢), one needs to

resolve the optimization problem (8) and (9) subject
to A™Min < T'#(t). According to section 11.2.2 of
Simon (2006), in this step, the inequality optimization
problem is converted into the equality constrained
optimization problem:

min J(Z(t))
s.t. (9) and S(&,) = —T(t) + x™ —o (D

In the same way, if the estimation results do not
satisfy T'Z(t) < X™2* one needs to resolve the
problem:

min J(&(t))

s.t. (9) and S(&, 1) = —Ta(f) + Xx™>—¢o  (12)

1). In step (P.1), we directly formulate the unconstrained
state estimator according to Ray (1981) and the formula-
tion will be given at the end of this section.

2). In step (P.2), we embed the inequality constraints
within the Ray’s optimal state estimation framework. Es-
sentially, the problems (11) and (12) are the same, in this
paper we use the problem (11) as representative to illus-
trate the derivation of formulation and finally we directly
give the formulation for the case (12).

According to Bryson (1975), it is easier to deal with
the equality constrained optimal control problems through
variational method when the constrained function contains
an explicit expression of the control variable i.e. U(t),
which is the case in this paper.

Consider the following constraint:

S(&,t) = —T@(t) + x™n =0 (13)
Since S(Z,t) does not contain the explicit expression of
U(t), an additional formulation needs to be developed. If
the constraint (13) is applied for all 0 < t < ¢y, its time
derivative along the path must vanish, i.e.,

ds(i,t) _ 05 05, _
a ot ot

0 (14)

Substituting (9) into (14), one obtains:

TAz(t) + TBu(t) + TU(t) =0 (15)
Apparently, (15) has explicit dependence on U (t) and thus
plays the role of a control variable constraint of the type
(3.3.1) in Bryson (1975). In this case, we formulate the
minimization problem as:

min J(z(t
s.t. (9§ a(n21) TA#(t) + TBu(t) + TU({t) =0 (10)

We first formulate the augmented Hamiltonian:
1 1 R .
H= §UT(t)RGU(t) +5 () - Ca (1) Q (y(t) — Ci(1))

A1) [A(t) + Bu(t) + U(t)]
—u(t) [LAZ(t) + T Bu(t) + TU(t)]

where Rg = GTRG, X is a Lagrange multiplier vector
and p is a Lagrange multiplier scalar. The last term of
Hamiltonian originates from the (15).

In order to guarantee the solvability of the constrained
minimization problem (16), the following three conditions
have to be satisfied:
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