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Abstract: It is well known that certain properties of the process dynamics can be deduced from
steady-state information about a process only. In this paper we consider the dual problem, that of
determining steady-state properties from process dynamics. In particular, we are concerned with
the problem of determining extremum points in the steady-state input-output map from dynamic
response data. This is a highly relevant problem in cases where the aim is to determine steady-
state optimal operating conditions using real time process measurements. For this purpose, we
first consider the connection between bifurcations of the zero dynamics and the steady-state
input-output map. Based on these results, we show that steady-state optimal conditions can be
determined from the process dynamics through consideration of local phase-lag properties of
the process only. We demonstrate the usefulness of this result by showing that the optimum of
a chemical reactor can be located, without any prior knowledge, using sinusoidal perturbations
and a phase-lock loop.
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1. INTRODUCTION

Bifurcation theory provides a link between the stability
of a dynamical system and the branching behavior of its
stationary solutions; solution branches meet where eigen-
values of the linearized dynamics cross the imaginary axis
[Guckenheimer and Holmes, 2002]. For the case of static
bifurcations, it implies that certain dynamic properties
can be predicted from steady-state information about the
system only, e.g., a singularity in the steady-state input-
output map implies that an eigenvalue crosses the imagi-
nary axis at that point and at least one of the steady-state
branches emerging from the singularity will be unstable.
For the specific case of feedback structures, Morari [1985]
derive a number of conditions from which stability prop-
erties of the closed-loop system can be deduced based on
steady-state information about the process only. He also
remarks on the close relationship between these results and
those of bifurcation theory.

In this paper we are concerned with what can be viewed as
the dual problem; that of deducing steady-state properties
of a process from information about its dynamics only.
This is in particular relevant when considering real-time
optimization problems where the aim is to locate a steady-
state optimum based on response data from the process
only. A steady-state optimum corresponds to a singular-
ity in the steady-state output-input map, and one would
therefore expect it to be related to a static bifurcation in
the corresponding zero dynamics. Indeed, as pointed out in
Jacobsen and Skogestad [1991], such a singularity should
imply that a real zero of the linearized system transfer-
function crosses the imaginary axis. Some sketches to

proofs for this is presented in Jacobsen [1994] and Sistu
and Bequette [1995]. Here we turn the problem around
and consider the implications of local bifurcations in the
zero dynamics for the stationary solution branches of a
process. In particular, we consider fold, or saddle-node,
bifurcations and Hopf bifurcations of the zero dynamics
and show that they give rise to different types of input
multiplicity. Somewhat surprisingly, very few results exist
on the implications of bifurcations of the zero dynamics.
One notable exception is Byrnes and Isidori [2002] who
use bifurcation analysis of the zero dynamics to study
the attractors of high-gain feedback systems in a small
neighbourhood of the origin. In the second part of the
paper we utilize the information obtained from consider-
ing bifurcations of the zero dynamics to predict steady-
state extremum points from dynamic response data. In
particular, we show how a phase-lock loop can be used to
drive a system to its steady-state optimum. All results are
demonstrated by application to simple CSTR models.

2. BIFURCATIONS OF THE ZERO DYNAMICS

We consider single-input single-output nonlinear dynami-
cal systems described by a set of ordinary differential and
algebraic equations on the input-affine form

ẋ= f(x) + g(x)u, x ∈ Rn, u ∈ R
y = h(x), y ∈ R (1)

Note that the main results derived below apply also to
systems that can not be written on input-affine form,
but the derivations are in that case more involved and
therefore not included here. The zero dynamics of system
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(1) correspond to the state dynamics when the output
y is forced to be zero or, more generally, constant. To
determine the zero dynamics of the system (1), introduce
a state transformation z = φ(x) to obtain

żi = zi+1, i = 1, r − 1 (2)

żr = b(ξ, η) + a(ξ, η)u (3)

η̇ = q(ξ, η) (4)

y = z1 (5)

where ξ = zi, i = 1, r and η = zi, i = r + 1, n and r is the
relative degree of the system. The zero dynamics are then
given by the dynamics of the n− r states η when the first
r states ξ are forced to be zero by means of the control
input u, i.e.,

η̇ = q(0, η) (6)

We are here interested in the consequences of bifurcations
of the zero dynamics, i.e., when eigenvalues of q(0, η)
linearised about an equilibrium point cross the imaginary
axis. The linear approximation of the zero dynamics at
an equilibrium point equals the zero dynamics of the
linearized system at the same equilibrium [Isidori, 1989].
That is, eigenvalues of the linearized zero dynamics coin-
cide with the zeros of the linearized dynamics of the open-
loop system (1) and bifurcations can hence be determined
from consideration of the transmission zeros of

ẋ=Ax(t) +Bu(t)

y(t) =Cx(t) (7)

where (A,B,C) is the linear approximation of (1) around
a given steady-state.

The transmission zeros of the linearized system (7) can be
determined from the rank of the matrix

M =

(
A− zI B

C 0

)
(8)

The transmission zeros are the values of z such that the
rank of M is less than the normal rank n+1. A bifurcation
of the zero dynamics (6) corresponds to at least one zero
z having zero real part. Using Schur’s identity we get

det(M) = det(A− zI)C(A− zI)−1B = 0 (9)

from which we get that z is a zero if detC(A−zI)−1B = 0
and z is not an eigenvalue of A. The latter condition
rules out pole-zero cancellations. Considering first the case
with z = 0, corresponding to a static fold or saddle-node
bifurcation of the zero dynamics, we get the condition
CA−1B = 0 which as expected corresponds to a zero
steady-state gain G(0) = 0 from input to output. To be
a bifurcation point, a transversality condition also needs
to be fulfilled, i.e., the zero must also move through the
origin as the input (and output) is varied. For this purpose,
consider the MacLaurin series of G(s) = C(sI −A)−1B

G(s) = Σ∞
i=0cis

i (10)

where ci = CA−1−iB. For small non-zero s we can neglect
higher order terms and then find that the zero close to
s = 0 is given by

z = −c0
c1

= −CA−1B

CA−2B

Since CA−2B must be non-zero (otherwise there is a
double zero at s = 0), we find that CA−1B = G(0) changes

sign as the zero changes sign. Thus, a static bifurcation of
the zero dynamics, corresponding to a real zero crossing
the imaginary axis, implies a change in the sign of the local
steady-state gain. This again corresponds to an extremum
point in the input-output map.

It is of interest to consider whether the converse of the
above result is also true, i.e., that an extremum point in the
steady-state input-output map implies a static bifurcation
in the zero dynamics. At an extremum point we have
CA−1B = 0 and we note from the MacLaurin series above
that then z = 0 is a transmission zero of G(s) unless also
all CA−iB, i > 1 are also all identically zero. The latter
case corresponds to having G(s) ≡ 0 at the extremum
point, and this is indeed possible if the zero gain is due
to a static nonlinearity, as in Wiener and Hammerstein
models. However, if the nonlinearity causing the extremum
point is inherent in the state dynamics then the system will
display a transient response also at the extremum point
and G(s) �= 0 for which G(0) = 0 implies a zero at z = 0
and a change in the sign ofG(0) implies a static bifurcation
in the zero dynamics at the extremum point.

Before turning to an example, we remark that the above
result does not imply that at least one solution has
unstable zero dynamics in the case of input multiplicity,
as is often claimed e.g., Sistu and Bequette [1995]. The
main reason for this is that transmission zeros may move
between the complex LHP and RHP through infinity as
well, and this does not correspond to a bifurcation and
does not affect the steady-state gain. Thus, all we can
conclude is that a static bifurcation of the zero dynamics
implies an extremum point in the steady-state input-
output map. This is also the fact that we will utilize to
determine steady-state optima from dynamic data in the
second part of the paper.

Example 1: isothermal CSTR. Consider an isother-
mal perfectly mixed tank reactor with two consecutive
reactions A → B, 2B → C, with standard mass action
kinetics

V ċA = F (cAf − cA)− V k1cA (11)

V ċB =−FcB + V k1cA − V k2c
2
B (12)

where cA and cB are concentrations of A and B, respec-
tively. With V = 1.0, cAf = 1.0, k1 = 2.0, k2 = 0.1 we get
from linearization of the model that a static bifurcation of
the zero dynamics occurs for

c∗A =
F

F + 2
; c∗B =

4

(F + 2)2

corresponding to c∗B = 0.71 for F ∗ = 0.375. As expected
this is also the maximum value of c∗B which can be seen
from Figure 1. From the figure it can also be seen that the
real zero in the RHP for low values of the flow F moves
towards the imaginary axis as F is increased from F = 0
and crosses into the LHP for F = 0.375. The fact that
a zero crosses the imaginary axis at the extremum point
implies that the process dynamics change significantly
around this point. In particular, there will be a large
change in the phase lag also for non-zero frequencies and
this is what we will utilize below to locate the vicinity of
the optimum using dynamic response data.
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