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Abstract: A key challenge in production optimization is handling of model uncertainty. Tra-
ditionally, production optimization is done in a deterministic setting, ignoring the uncertainty.
In this work, we formulate the problem as a two-stage stochastic programming problem. The
solution to the problem is a strategy for operating the wells, instead of a single setpoint obtained
from the deterministic problem. This strategy is easy to follow for the operator. A synthetic case
study shows how the proposed approach increases the expected oil production by 1.5 percent.
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1. INTRODUCTION

In the exploitation of oil and gas, Real Time Optimization
(RTO) can be used to optimize the production. RTO is
a widely studied topic, see Tosukhowong et al. (2004),
and although no widely accepted formal definition of
RTO exists, it is used to denote a workflow where some
of the decision variables are optimized by the use of
mathematical optimization. A control hierarchy is often
structured in layers according to time scales. In the context
of upstream production, this hierarchy is divided into
the four layers, asset management, long-term reservoir
management, production optimization in daily operation,
and control and automation (Foss and Jensen, 2011). We
will in this work focus on production optimization, where
typical control inputs include production choke opening
and gas-lift rates. However, this layer is closely linked
to the other layers, especially reservoir management. An
early reference in the context of petroleum production is
Saputelli et al. (2003), and a later overview of RTO can
be found in Bieker et al. (2007a). The remainder of this
paper will focus on this application domain.

In RTO, a mathematical model is employed when optimiz-
ing the performance of the system. This model is used to
predict the outcome when changing decision variables, e.g.
a model may describe an oil well by predicting flow rate
for various choke openings. However, the model may fail to
accurately predict the outcome due to model uncertainty.
For example when the model is based on recent production
data, it will often be accurate in the region around the
current operating point, but poor when evaluated further
away from this operating point. Models used in produc-
tion optimization and reservoir management are inherently
uncertain. This is due to the complexity of the system,
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difficulty in modeling multiphase flow and sparsity of well
tests. If special precautions are not taken, the solution
to the optimization problem might be in a region where
we do not trust the model, and the output might thus
have to be disregarded. The model uncertainty challenge
was articulated in Bieker et al. (2007a); “The handling
of model uncertainty is a key challenge for the success of
RTO”.

Although models are uncertain, this is often neglected
when solving RTO problems. The most common approach
is to solve what is known as the expected value problem.
That is using the expected value of the uncertain param-
eters, e.g. using the gas-oil-ratio (GOR) and water cut
(WC) from the most recent well test of each well. Thus,
the fact that these values are uncertain does not enter
into the formulation of the optimization problem. For an
unconstrained problem, this might still be a viable ap-
proach, although no guarantee of optimality can be given.
For a constrained problem, however, this approach has
some serious flaws. Consider the production optimization
problem where the objective is to maximize oil production,
subject to a constraint on the gas processing capacity.
When the gas processing capacity is limiting the produc-
tion, the solution to the optimization problem will be at
the constraint, that is, the modeled gas flow at the solution
will be equal to the capacity constraint. If the solution
were to be implemented directly, there is a chance that
the constraint will be violated, but also a chance for the
constraint to be inactive, such that there is spare capacity
left. This happens because of model uncertainty, where
the actual response of the system deviate from the model
output.

The operator will, in a petroleum production setting,
adjust the controls iteratively in order to reach the sug-
gested setpoint. Thus, when there are multiple wells, there
are multiple paths in order to reach the setpoint. If the
operator discovers that he can not reach it, meaning it
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is infeasible, he might simply disregard it, and end up
somewhere in between the prior operating condition and
the suggested one. Thus, it is clear that the selected path
will affect the outcome. However, this fact is actually not
included in the optimization problem.

When solving the expected value problem, often denoted
as the deterministic problem, we make the assumption that
everything about the problem is perfectly known. We can
then find a setpoint for all the control inputs, which will be
optimal for the formulated problem. In this context, the
solution will be feasible provided a feasible point exists.
However, because of model uncertainty, there is a great
chance the solution is unreachable. To overcome this, we
can formulate the problem such that the solution will be
feasible with a high probability. This can be done by using
chance constraints, or in an even more conservative way,
by applying a robust formulation. With chance constraints
or a robust formulation, we can be quite certain that the
solution will be feasible in practice, the drawback, however,
is that the solution may be quite conservative.

In the deterministic world, where everything is known, it
makes sense that the solution to the optimization problem
is a setpoint for all the wells. In the real world, however,
it is sensible to challenge this approach. Thus, in this
paper, we propose a two-stage optimization formulation
that defines an operational strategy rather than a single
operating point. We also argue that such a strategy fits
nicely into the mindset of operators.

We give a short overview of previous work in Section 2,
before focusing on stochastic programming in Section 3.
The mathematical formulation of our approach is given in
Section 3.1. We then evaluate the approach on 3 different
synthetic cases with increasing complexity in Section 4,
ahead of a discussion of the results and conclusion in
Section 5.

2. PREVIOUS WORK

There exists numerous publications on reservoir manage-
ment under uncertainty, amongst others (van Essen et al.,
2009; Chen et al., 2011). Uncertainty usually enters the
reservoir optimization problems by the use of multiple re-
alizations to span subsurface uncertainty. Published work
does not, to the authors’ knowledge, include capacity con-
straints, except for Chen et al. (2011), where they use a
robust formulation to handle such constraints.

There are only a few published papers on short term pro-
duction optimization under uncertainty. In Elgsæter et al.
(2010), a structured approach for changing the setpoint
when there is uncertainty is proposed. The uncertainty
is, however, not considered in the optimization itself,
only to assess the solution. To our knowledge, the only
publication where the uncertainty is explicitly handled
in the optimization problem is by Bieker et al. (2007b).
They propose to formulate the optimization solution as
a priority list between the wells. This list represents an
operational strategy, thus whenever there is spare capacity
or the opposite, the priority list is applied.

Although many deterministic formulations result in a
single operating point, there are some methods which
naturally extends to a strategy. The ideas of using in-

cremental GOR for rate dependent wells in Urbanczyk
and Wattenbarger (1994) and Barnes et al. (1990), can
be thought of as strategies rather than providing specific
operating points. However, these methods works for only
one constraints, and are not easily extended for multiple
constraints.

3. PRODUCTION OPTIMIZATION BY STOCHASTIC
PROGRAMMING

A general deterministic optimization problem can be for-
mulated as

min
x

J(x) s.t. c(x) ≤ 0 (1)

When the problem contains uncertainty, both the objective
and the constraints can be dependent on a stochastic pa-
rameters, denoted ω. Thus, the objective and constraints
are no longer deterministic, but rather stochastic variables.
To compare two different stochastic objective functions, we
must compare distributions instead of scalars. A natural
approach is therefore to compare expected values. Methods
emphasizing some quantile of the distribution is also typi-
cal. Since the short term production optimization problem
is solved on a daily basis over many years, it is reasonable
to use the expected value. For the reservoir optimization
problem, however, a more conservative approach could be
more reasonable.

While handling uncertainty in the objective boils down to
assessing distributions instead of scalars, constraints are
fundamentally different. The satisfaction of a constraint
on average is often inadequate, while a robust formulation
ensuring that the constraints hold with probability 1, can
lead to an overly conservative solution. A middle of the
road approach is to use chance constraints, formulating
the problem as

min
x

E[J(x, ω)] s.t. Pr.{c(x, ω) ≤ 0} ≥ α (2)

so that the solution must hold with a predefined probabil-
ity α. The solution of (2) will, however, with probability
α have a margin to the constraint. In the production op-
timization problem with capacity constraints, this means
there will probably be spare capacity when the solution
is implemented. The operator might try to utilize this,
but it is not included in the optimization problem. Thus,
the final implemented operating point is dependent on
the optimized solution and the operators implementation
strategy.

Since the constraints are uncertain, it is not possible to
provide the operator with a single setpoint for all the
wells, such that it is feasible with probability 1, while
at least one capacity constraint is active. However, we
could specify a setpoint for each well, and in addition
specify which well to turn up to utilize additional spare
capacity. The initial setpoint should be feasible with a high
probability. This is similar to how many fields are operated
today, using a swing producer to utilize any spare capacity.
The difference is that we include this information into the
optimization problem itself, and the setpoint is calculated
with awareness of this second phase. Which well to use as
a swing producer will also be part of the solution to the
optimization problem. Because of different well properties
and dynamics, certain wells might be more suitable to
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