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a b s t r a c t

We propose a two-shot fringe analysis method for Fringe Patterns (FPs) with random phase-shift and
changes in illumination components. These conditions reduce the acquisition time and simplify the
experimental setup. Our method builds upon a Gabor Filter (GF) bank that eliminates noise and estimates
the phase from the FPs. The GF bank allows us to obtain two phase maps with a sign ambiguity between
them. Due to the fact that the random sign map is common to both computed phases, we can correct the
sign ambiguity. We estimate a local phase-shift from the absolute wrapped residual between the esti-
mated phases. Next, we robustly compute the global phase-shift. In order to unwrap the phase, we
propose a robust procedure that interpolates unreliable phase regions obtained after applying the GF
bank. We present numerical experiments that demonstrate the performance of our method.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Despite the advances in single-shot algorithms for Fringe Pat-
tern (FP) with closed fringes, in recent years there has been an
interest in developing two-step algorithms with random phase-
shift since such an approach simplifies and strengthens the phase
recovering procedure. See, for example, the methods reported in
Refs. [1–10] and references therein. Those techniques have sig-
nificantly reduced the acquisition time and simplified the experi-
mental setups. In this work, we propose a two-step analysis
method that assumes the following FP model:

ϕ δ η( ) = ( ) + ( ) ( ( ) + ) + ( ) = ( )I x a x b x x x jcos ; 1, 2 1j j j j j

where = [ ]⊤x x x,1 2 denotes the pixel position in a regular lattice .
The unknowns in (1) are the background illumination, a1 and a2;
the local fringe contrast, b1 and b2; the phase-shift, δ1 and δ2; the
phase map we are interested in computing, ϕ; and, of course, the
independent noise, η1 and η2. Without loss of generality, we define
the random phase-shifts δ = 01 and δ δ=2 , with δ π π∈ [ − ), . In this
work, we assume aj, bj (for j¼1, 2) and ϕ are smooth. Fig. 1 shows a
couple of interferograms with the afore-mentioned characteristics.

In this paper, we propose a robust algorithm that overcomes
the limitation of random two-step algorithm in the literature. Our
method estimates the phase from two noisy FPs with spatial–
temporal variations in the illumination conditions and a random
phase-shift, δ. Our method consists of three stages:

1. Normalisation: We propose to normalise the FP (eliminating the
illumination components a and b) with the application of a
Gabor Filter (GF) bank. By means of this filter bank, we compute
the local phase of each FP, except for a common random sign
map. We also compute a quality map that indicates the pixels
where the FP is correctly normalised. GFs [11] are widely used
in image processing, computer vision and other areas [12–14].

2. Phase computing: In order to compute the final phase, we pro-
pose a method for estimating the phase shift between the FPs.
We also show that procedures for phase shift computing based
on the cross-correlation factor or Gram–Schmidt orthonorma-
lisation fail to estimate the phase shift.

3. Phase unwrapping: We present a variant for robust phase un-
wrapping. Our variant incorporates the quality map and inter-
polates unreliable regions.

The FP normalisation consists in removing the background il-
lumination and the contrast variations. Recently, Trusiak and Pa-
tosky proposed a normalisation procedure based on the Hilbert–
Huang Transform (HHT) [9]. However, HHT is prone to fail when
the FPs have regions with high frequencies that are corrupted by
noise: the FP's extrema corresponding to high frequencies can be
confused with noise. An alternative is to reduce the noise previous
to the normalisation. For this task, Villa et al. propose a method for
FPs filtering that can be understood in two stages: estimation of
the local fringe's orientation, and low-pass filtering along the
fringes [15]. Abramovich et al. investigate other alternatives for FP
filtering that can be considered as directional low-pass filters [16].
Enguita et al. proposed the use of GF bank (set of narrow-band
filters) for denoising FPs produced by conoscopic holography [17].
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The FPs, with almost constant frequency, are normalised. In order
to simultaneously filter noise and compute the phase, Jun and
Asundi use a GF bank tuned to the dominant phase peak (carrier
frequency) [18]. As we are not assuming a carrier frequency, we
propose the use of a GF bank that covers half of the Discrete
Fourier Domain and rejects the low-pass region spectra (related to
the background illumination) and very-high frequencies (assumed
as noise). In this paper, we assume that the phase map and the
illumination components of the FPs are smooth. Thus, it is natural
to compute the normalised FP as the cosine of the phase corre-
sponding to the GF's response with maximum magnitude.

After normalising the FPs, one can proceed with the phase
computation. This requires the implicit or explicit computation of
the phase-shift. A popular strategy for estimating the random
phase-shift build upon the definition of the cross-correlation fac-
tor (c.c.f.): the cosine of the angle between two multidimensional
vectors [7–10]. However, as we demonstrate, the angle between
multidimensional vectors is not the phase-shift between FPs. An-
other strategy computes the ratio of the extreme values (max-
imum or minimum) of the FPs [6]. The disadvantage of these
strategies are the computational cost of detecting the extrema and
its limitation in dealing with noisy FP. Wang and Han propose a
two-stage method to iteratively estimate the phase and the phase-
shift [2]. Rivera et al. present a generalisation to deal with more
than two FPs [19]. Despite the advantages of the methods of Wang
and Han, and Rivera et al.; they are computationally expensive and
require normalised FPs. On the other hand, our method computes
the phase from two FPs with random phase-shift and spatio-
temporal variations in their illumination components.

Since the computed phase can be unreliable within regions
with very-low frequency, saddle sites and fringes centre, we
modify the phase unwrapping method ARM [20] to interpolate the
unreliable regions.

This paper is organised as follows. Section 2 presents our
method. It begins with the normalisation stage, followed by the
phase recovery stage and the unwrapping procedure. Section 3
discusses the limitations of other approaches in contrast to our
proposal. Section 4 presents experiments in order to demonstrate
our method's capabilities. Finally, conclusions are given in Section
5.

2. Methods

The proposed method consists of three stages. First, we use a
GF bank to recover the phase from an FP, up to a random sign map
s. We denote this phase extraction step by the operator . Next,
we estimate the phase-shift between the pair of FPs and compute

the sign-corrected phase. Finally, we unwrap the phase using a
robust procedure (denoted by the operator −1) that interpolates
unreliable phase pixels.

2.1. Normalisation

The normalisation operator is implemented as a procedure.
It is defined in this subsection and is based on the application of a
Gabor Filter (GF) bank { } = …hk k K1,2, , . The GF bank allows us to es-
timate the local magnitude and phase of the FPs, I1 and I2. GFs are
band-pass filters that are the result of modulating a complex si-
nusoid with a Gaussian [11]. The complex form of the convolution
kernel is of the form

( ) = ( ) ( ) ( )h x g x c x 2k
def

k k

where

σ ω( ) = − ( ) ( ) = − ( )⊤ ⊤⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦g x x x c x i xexp / 2 and exp , 3k k k k
2

where = −i 1
def

, sk is the width of the Gaussian filter (bandwidth
of the bandpass filter) and ω = [ ]⊤u v,k k k is the central complex
frequency (centre of the bandpass filter). The behaviour of a GF (2)
can be easily understood in the Fourier space. The transformation
of the ck term corresponds to Kronecker's delta at ωk. The trans-
formation of the Gaussian gk is another Gaussian Gk. By the con-
volution theorem of the Fourier transform, a Gabor filter in the
frequency domain is given by a Gaussian centred at ωk, i.e.,

ω ω ω( ) = ( − )H Gk k k ; see Fig. 2. Let

˜ = ⁎ = = … ( )I h I j k Kfor 1, 2; 1, 2, , , 4j
k

k j

the result of applying the kth GF to the jth FP; where n denotes
convolution. Since hk is complex, then

( )ψ˜ ( ) = ( ) − ( ) ( )I x m x i xexp 5j
k def

j
k

j
k

is complex too with magnitude ( )m xj
k and phase ψ ( )xj

k . The filter
with maximum response for the jth FP at pixel x is

( ) = ( )
( )

⁎k x m xarg max .
6j

k
j
k

Thus, the local magnitude and phase are given by

( ) = ( ) ( )
( )⁎

m x m x 7j
def

j

k xj

and

ψ ψ( ) = ( ) ( )
( )⁎

x x 8j
def

j

k xj

Fig. 1. Noisy interferograms with random phase-shift and spatial–temporal variations in the illumination components.
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