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Abstract A transformation to variant and invariant states, called extents, is used to decouple
the dynamic effects of reaction systems and serves as basis for incremental model identification,
in which kinetic models are identified individually for each dynamic effect. This contribution
introduces a novel transformation to extents for the incremental model identification of two-
phase distributed reaction systems. Distributed reaction systems are discussed for two cases,
namely, when measurements along the spatial coordinate are available and when they are not.
In the second case, several measurements made under appropriate operating conditions are
combined to overcome the lack of measurements along the spatial coordinate. This novel method
is illustrated via the simulated example of a two-phase tubular reactor.
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1. INTRODUCTION

Dynamic models of reaction systems represent the corner-
stone of monitoring, control and optimization of indus-
trial chemical processes. If it can be assumed that each
phase is well mixed, the models describe the state evolu-
tion over time by means of ordinary differential equations
(ODE) expressing the conservation of mass and energy.
The identification of rate expressions (or kinetic models)
for the various dynamic effects at work often represents a
challenge. The difficulty arises from the coupling between
the different physical effects, as in the case of reaction
systems with two phases, where reaction and mass-transfer
phenomena are interdependent (inherently coupled).

Identification problems are commonly solved in one step
using a simultaneous method, where an overall kinetic
model comprising rate expressions for all dynamic effects
is identified. This method suffers from combinatorial com-
plexity and can lead to convergence problems and high
parameter correlation, Bhatt et al. (2012). As an alter-
native, the incremental methods break down the original
identification problem into a set of subproblems of lower
complexity, which allows the individual modeling of each
dynamic effect, Marquardt (2005). The incremental meth-
ods exist in two variants, (a) the rate-based approach that
relies on a differential method of parameter estimation via
rates, Brendel et al. (2006); Jia et al. (2012), and (b) the
extent-based approach that uses an integral method of
parameter estimation via extents. This latter approach,
which is discussed in this article, is based on two steps:
(i) the computation of the contributions of each dynamic
effect in the form of extents, Rodrigues et al. (2015), and
(ii) the identification of each kinetic model by comparing
individually the computed and modeled extents, Srini-
vasan et al. (2012); Billeter et al. (2013).

In this article, the assumption of perfect mixing within
each phase is relaxed, and the model identification in two-
phase distributed reaction systems (resolved in time and
space) is considered from a methodological standpoint,
Rodrigues et al. (2015). Inhomogeneity can either result
from a technical flaw, as in reactors with poor mixing
(dead zones), or be the consequence of a technical choice,
as in tubular reactors. Such reaction systems are described
by partial differential equations (PDE), which complicates
the identification task.

The paper is organized as follows. Section 2 presents a
novel transformation to extents for two-phase distributed
reaction systems described by PDE and discusses the use
of these extents for incremental identification. Section 3
proposes experimental conditions that lead to a simplified
identification problem using ODE. Section 4 discusses a
simulated example of a two-phase tubular reactor, while
Section 5 concludes the paper.

2. INCREMENTAL MODEL IDENTIFICATION

As a working example, let us consider a one-dimensional
tubular reactor of length ze resolved in time t and space
z containing two fluid phases, L and G, at constant
temperature. Each phase F ∈ {L,G} contains sf species,
f ∈ {l, g}, which are subjected on one hand to advection
(forced convection) and on the other hand to rf reactions
and m mass transfers between the phases. Assuming the
velocity is sufficiently high, diffusion is neglected and the
velocity profile is in a plug-flow regime, which allows
treating the tubular reactor as one dimensional.

2.1 Material Balance Equations

The dynamics of the distributed reaction system outlined
above can be described by a set of PDE representing the
material balance of all species involved in the phase F :

9th International Symposium on Advanced Control of Chemical Processes
June 7-10, 2015. Whistler, British Columbia, Canada

Copyright © 2015 IFAC 266

Incremental Model Identification of

Distributed Two-phase Reaction Systems

Diogo Rodrigues, Julien Billeter, Dominique Bonvin

Laboratoire d’Automatique, Ecole Polytechnique Fédérale de Lausanne
1015 Lausanne, Switzerland (e-mail: julien.billeter@epfl.ch).

Abstract A transformation to variant and invariant states, called extents, is used to decouple
the dynamic effects of reaction systems and serves as basis for incremental model identification,
in which kinetic models are identified individually for each dynamic effect. This contribution
introduces a novel transformation to extents for the incremental model identification of two-
phase distributed reaction systems. Distributed reaction systems are discussed for two cases,
namely, when measurements along the spatial coordinate are available and when they are not.
In the second case, several measurements made under appropriate operating conditions are
combined to overcome the lack of measurements along the spatial coordinate. This novel method
is illustrated via the simulated example of a two-phase tubular reactor.

Keywords: Distributed chemical reactors, Variants and invariants, Reaction extents, Kinetic
identification

1. INTRODUCTION

Dynamic models of reaction systems represent the corner-
stone of monitoring, control and optimization of indus-
trial chemical processes. If it can be assumed that each
phase is well mixed, the models describe the state evolu-
tion over time by means of ordinary differential equations
(ODE) expressing the conservation of mass and energy.
The identification of rate expressions (or kinetic models)
for the various dynamic effects at work often represents a
challenge. The difficulty arises from the coupling between
the different physical effects, as in the case of reaction
systems with two phases, where reaction and mass-transfer
phenomena are interdependent (inherently coupled).

Identification problems are commonly solved in one step
using a simultaneous method, where an overall kinetic
model comprising rate expressions for all dynamic effects
is identified. This method suffers from combinatorial com-
plexity and can lead to convergence problems and high
parameter correlation, Bhatt et al. (2012). As an alter-
native, the incremental methods break down the original
identification problem into a set of subproblems of lower
complexity, which allows the individual modeling of each
dynamic effect, Marquardt (2005). The incremental meth-
ods exist in two variants, (a) the rate-based approach that
relies on a differential method of parameter estimation via
rates, Brendel et al. (2006); Jia et al. (2012), and (b) the
extent-based approach that uses an integral method of
parameter estimation via extents. This latter approach,
which is discussed in this article, is based on two steps:
(i) the computation of the contributions of each dynamic
effect in the form of extents, Rodrigues et al. (2015), and
(ii) the identification of each kinetic model by comparing
individually the computed and modeled extents, Srini-
vasan et al. (2012); Billeter et al. (2013).

In this article, the assumption of perfect mixing within
each phase is relaxed, and the model identification in two-
phase distributed reaction systems (resolved in time and
space) is considered from a methodological standpoint,
Rodrigues et al. (2015). Inhomogeneity can either result
from a technical flaw, as in reactors with poor mixing
(dead zones), or be the consequence of a technical choice,
as in tubular reactors. Such reaction systems are described
by partial differential equations (PDE), which complicates
the identification task.

The paper is organized as follows. Section 2 presents a
novel transformation to extents for two-phase distributed
reaction systems described by PDE and discusses the use
of these extents for incremental identification. Section 3
proposes experimental conditions that lead to a simplified
identification problem using ODE. Section 4 discusses a
simulated example of a two-phase tubular reactor, while
Section 5 concludes the paper.

2. INCREMENTAL MODEL IDENTIFICATION

As a working example, let us consider a one-dimensional
tubular reactor of length ze resolved in time t and space
z containing two fluid phases, L and G, at constant
temperature. Each phase F ∈ {L,G} contains sf species,
f ∈ {l, g}, which are subjected on one hand to advection
(forced convection) and on the other hand to rf reactions
and m mass transfers between the phases. Assuming the
velocity is sufficiently high, diffusion is neglected and the
velocity profile is in a plug-flow regime, which allows
treating the tubular reactor as one dimensional.

2.1 Material Balance Equations

The dynamics of the distributed reaction system outlined
above can be described by a set of PDE representing the
material balance of all species involved in the phase F :

9th International Symposium on Advanced Control of Chemical Processes
June 7-10, 2015. Whistler, British Columbia, Canada

Copyright © 2015 IFAC 266

Incremental Model Identification of

Distributed Two-phase Reaction Systems

Diogo Rodrigues, Julien Billeter, Dominique Bonvin

Laboratoire d’Automatique, Ecole Polytechnique Fédérale de Lausanne
1015 Lausanne, Switzerland (e-mail: julien.billeter@epfl.ch).

Abstract A transformation to variant and invariant states, called extents, is used to decouple
the dynamic effects of reaction systems and serves as basis for incremental model identification,
in which kinetic models are identified individually for each dynamic effect. This contribution
introduces a novel transformation to extents for the incremental model identification of two-
phase distributed reaction systems. Distributed reaction systems are discussed for two cases,
namely, when measurements along the spatial coordinate are available and when they are not.
In the second case, several measurements made under appropriate operating conditions are
combined to overcome the lack of measurements along the spatial coordinate. This novel method
is illustrated via the simulated example of a two-phase tubular reactor.

Keywords: Distributed chemical reactors, Variants and invariants, Reaction extents, Kinetic
identification

1. INTRODUCTION

Dynamic models of reaction systems represent the corner-
stone of monitoring, control and optimization of indus-
trial chemical processes. If it can be assumed that each
phase is well mixed, the models describe the state evolu-
tion over time by means of ordinary differential equations
(ODE) expressing the conservation of mass and energy.
The identification of rate expressions (or kinetic models)
for the various dynamic effects at work often represents a
challenge. The difficulty arises from the coupling between
the different physical effects, as in the case of reaction
systems with two phases, where reaction and mass-transfer
phenomena are interdependent (inherently coupled).

Identification problems are commonly solved in one step
using a simultaneous method, where an overall kinetic
model comprising rate expressions for all dynamic effects
is identified. This method suffers from combinatorial com-
plexity and can lead to convergence problems and high
parameter correlation, Bhatt et al. (2012). As an alter-
native, the incremental methods break down the original
identification problem into a set of subproblems of lower
complexity, which allows the individual modeling of each
dynamic effect, Marquardt (2005). The incremental meth-
ods exist in two variants, (a) the rate-based approach that
relies on a differential method of parameter estimation via
rates, Brendel et al. (2006); Jia et al. (2012), and (b) the
extent-based approach that uses an integral method of
parameter estimation via extents. This latter approach,
which is discussed in this article, is based on two steps:
(i) the computation of the contributions of each dynamic
effect in the form of extents, Rodrigues et al. (2015), and
(ii) the identification of each kinetic model by comparing
individually the computed and modeled extents, Srini-
vasan et al. (2012); Billeter et al. (2013).

In this article, the assumption of perfect mixing within
each phase is relaxed, and the model identification in two-
phase distributed reaction systems (resolved in time and
space) is considered from a methodological standpoint,
Rodrigues et al. (2015). Inhomogeneity can either result
from a technical flaw, as in reactors with poor mixing
(dead zones), or be the consequence of a technical choice,
as in tubular reactors. Such reaction systems are described
by partial differential equations (PDE), which complicates
the identification task.

The paper is organized as follows. Section 2 presents a
novel transformation to extents for two-phase distributed
reaction systems described by PDE and discusses the use
of these extents for incremental identification. Section 3
proposes experimental conditions that lead to a simplified
identification problem using ODE. Section 4 discusses a
simulated example of a two-phase tubular reactor, while
Section 5 concludes the paper.

2. INCREMENTAL MODEL IDENTIFICATION

As a working example, let us consider a one-dimensional
tubular reactor of length ze resolved in time t and space
z containing two fluid phases, L and G, at constant
temperature. Each phase F ∈ {L,G} contains sf species,
f ∈ {l, g}, which are subjected on one hand to advection
(forced convection) and on the other hand to rf reactions
and m mass transfers between the phases. Assuming the
velocity is sufficiently high, diffusion is neglected and the
velocity profile is in a plug-flow regime, which allows
treating the tubular reactor as one dimensional.

2.1 Material Balance Equations

The dynamics of the distributed reaction system outlined
above can be described by a set of PDE representing the
material balance of all species involved in the phase F :

9th International Symposium on Advanced Control of Chemical Processes
June 7-10, 2015. Whistler, British Columbia, Canada

Copyright © 2015 IFAC 266

Incremental Model Identification of

Distributed Two-phase Reaction Systems

Diogo Rodrigues, Julien Billeter, Dominique Bonvin

Laboratoire d’Automatique, Ecole Polytechnique Fédérale de Lausanne
1015 Lausanne, Switzerland (e-mail: julien.billeter@epfl.ch).

Abstract A transformation to variant and invariant states, called extents, is used to decouple
the dynamic effects of reaction systems and serves as basis for incremental model identification,
in which kinetic models are identified individually for each dynamic effect. This contribution
introduces a novel transformation to extents for the incremental model identification of two-
phase distributed reaction systems. Distributed reaction systems are discussed for two cases,
namely, when measurements along the spatial coordinate are available and when they are not.
In the second case, several measurements made under appropriate operating conditions are
combined to overcome the lack of measurements along the spatial coordinate. This novel method
is illustrated via the simulated example of a two-phase tubular reactor.

Keywords: Distributed chemical reactors, Variants and invariants, Reaction extents, Kinetic
identification

1. INTRODUCTION

Dynamic models of reaction systems represent the corner-
stone of monitoring, control and optimization of indus-
trial chemical processes. If it can be assumed that each
phase is well mixed, the models describe the state evolu-
tion over time by means of ordinary differential equations
(ODE) expressing the conservation of mass and energy.
The identification of rate expressions (or kinetic models)
for the various dynamic effects at work often represents a
challenge. The difficulty arises from the coupling between
the different physical effects, as in the case of reaction
systems with two phases, where reaction and mass-transfer
phenomena are interdependent (inherently coupled).

Identification problems are commonly solved in one step
using a simultaneous method, where an overall kinetic
model comprising rate expressions for all dynamic effects
is identified. This method suffers from combinatorial com-
plexity and can lead to convergence problems and high
parameter correlation, Bhatt et al. (2012). As an alter-
native, the incremental methods break down the original
identification problem into a set of subproblems of lower
complexity, which allows the individual modeling of each
dynamic effect, Marquardt (2005). The incremental meth-
ods exist in two variants, (a) the rate-based approach that
relies on a differential method of parameter estimation via
rates, Brendel et al. (2006); Jia et al. (2012), and (b) the
extent-based approach that uses an integral method of
parameter estimation via extents. This latter approach,
which is discussed in this article, is based on two steps:
(i) the computation of the contributions of each dynamic
effect in the form of extents, Rodrigues et al. (2015), and
(ii) the identification of each kinetic model by comparing
individually the computed and modeled extents, Srini-
vasan et al. (2012); Billeter et al. (2013).

In this article, the assumption of perfect mixing within
each phase is relaxed, and the model identification in two-
phase distributed reaction systems (resolved in time and
space) is considered from a methodological standpoint,
Rodrigues et al. (2015). Inhomogeneity can either result
from a technical flaw, as in reactors with poor mixing
(dead zones), or be the consequence of a technical choice,
as in tubular reactors. Such reaction systems are described
by partial differential equations (PDE), which complicates
the identification task.

The paper is organized as follows. Section 2 presents a
novel transformation to extents for two-phase distributed
reaction systems described by PDE and discusses the use
of these extents for incremental identification. Section 3
proposes experimental conditions that lead to a simplified
identification problem using ODE. Section 4 discusses a
simulated example of a two-phase tubular reactor, while
Section 5 concludes the paper.

2. INCREMENTAL MODEL IDENTIFICATION

As a working example, let us consider a one-dimensional
tubular reactor of length ze resolved in time t and space
z containing two fluid phases, L and G, at constant
temperature. Each phase F ∈ {L,G} contains sf species,
f ∈ {l, g}, which are subjected on one hand to advection
(forced convection) and on the other hand to rf reactions
and m mass transfers between the phases. Assuming the
velocity is sufficiently high, diffusion is neglected and the
velocity profile is in a plug-flow regime, which allows
treating the tubular reactor as one dimensional.

2.1 Material Balance Equations

The dynamics of the distributed reaction system outlined
above can be described by a set of PDE representing the
material balance of all species involved in the phase F :

9th International Symposium on Advanced Control of Chemical Processes
June 7-10, 2015. Whistler, British Columbia, Canada

Copyright © 2015 IFAC 266



 Diogo Rodrigues et al. / IFAC-PapersOnLine 48-8 (2015) 266–271 267

∂

∂t

(

ǫf cf (z, t)
)

+
∂

∂z

(

ǫf vf cf (z, t)
)

=

NT

f ǫf rf (z, t)±Em,f ǫf φφφm,f (z, t) (1)

with the initial conditions cf (z, 0) = cf,0(z) and the
boundary conditions cf (0, t) = cf,in(t), see Friedly (1972).

In (1), cf denotes the sf -dimensional vector of concen-
trations, ǫf the volumetric fraction of phase F such that
ǫl+ ǫg = 1, Nf the rf ×sf constant stoichiometric matrix,
rf the rf -dimensional vector of reaction rates, Em,f the
sf × m mass-transfer matrix containing ones for species
transferring via a given mass transfer and zeros for all
others, a positive sign (+) being used for the phase L and
a negative sign (–) for the phase G (by convention), φφφm,f

the m-dimensional vector of mass-transfer rates, and vf
the velocity of the advective flow. The rates rf and φφφm,f

are expressed in units of concentration per unit of time.
For the sake of conciseness, the dependence of vf and ǫf
on z and t is omitted, that is, vf and ǫf stand for vf (z, t)
and ǫf(z, t).

2.2 Transformation to Extents

Equation (1) has three contributions that are associated
with advection, reactions and mass transfers. Since the
corresponding terms ∂

∂z
(ǫfvfcf ), ǫfrf and ǫfφφφm,f appear

linearly, the principle of superposition is satisfied and each
contribution can be computed separately.

The effect that advection has on the initial and bound-
ary conditions in absence of all other dynamic effects is
obtained by solving the differential equation

∂

∂t

(

ǫf cibc,f (z, t)
)

+
∂

∂z

(

ǫf vf cibc,f (z, t)
)

= 0sf (2)

with cibc,f (z, 0) = cf,0(z) and cibc,f (0, t) = cf,in(t).

The effect of advection on the initial and boundary con-
ditions is removed by writing concentrations as deviation
variables, δcf = cf − cibc,f , and (1) becomes:

∂

∂t

(

ǫf δcf (z, t)
)

+
∂

∂z

(

ǫf vf δcf (z, t)
)

=

NT

f ǫf rf (z, t)±Em,f ǫf φφφm,f (z, t) (3)

with δcf (z, 0) = 0sf and δcf (0, t) = 0sf .

Let rank
(

[

NT

f ±Em,f

]

)

= rf + m and consider the

matrix Tf =
[

NT

f ±Em,f Pf

]

−1
, where Pf is the null

space of the matrix
[

NT

f ±Em,f

]T
. 1 Then, Tf transforms

δcf into three contributions, namely, rf extents of reaction
xr,f , m extents of mass transfer xm,f , and qf = sf − (rf +
m) invariants xiv,f :

[

xr,f (z, t)
xm,f (z, t)
xiv,f (z, t)

]

= Tf δcf (z, t) =
[ Tr,f
Tm,f

Tiv,f

]

δcf (z, t). (4)

With this transformation, the material balance equations
(3) are split into the three sets of equations:

1 Provided that the rank condition is satisfied, the dimension of cf
can be reduced to sf ≥ rf +m.

∂

∂t

(

ǫf xr,f (z, t)
)

+
∂

∂z

(

ǫf vf xr,f (z, t)
)

= ǫf rf (z, t) (5)

∂

∂t

(

ǫf xm,f (z, t)
)

+
∂

∂z

(

ǫf vf xm,f (z, t)
)

= ǫf φφφm,f(z, t) (6)

xiv,f (z, t) = 0qf (7)

with all initial and boundary conditions equal to zero. 2

Pre-multiplying (4) by T −1
f =

[

NT

f ±Em,f Pf

]

,

considering the fact that xiv,f (z, t) = 0qf , and using the
definition of deviation variables, cf = δcf + cibc,f , the
concentrations can be reconstructed from the extents as:

cf (z, t) = NT

f xr,f (z, t)±Em,f xm,f (z, t)+ cibc,f(z, t) (8)

The meaning of the extents introduced in (5)-(7) is as
follows:

Extents of reaction xr,f The extent of reaction xr,f,i

(∀i = 1, ..., rf ) indicates the amount in concentration units
at position z and time t that has been produced by the ith
reaction. The ith extent of reaction is decoupled from all
the other extents (in particular from the other extents of
reaction).

Extents of mass transfer xm,f The extent of mass
transfer xm,f,j (∀j = 1, ...,m) indicates the amount in
concentration units at position z and time t that has been
transferred between phases by the jth mass transfer.

Invariants xiv,f The qf invariants xiv,f represent vari-
ables that are orthogonal (by construction) to all the
other extents and therefore invariant in time and space.
These variables represent true invariants since they remain
identically equal to zero.

For each extent, the term ∂
∂z
(·) accounts for the amount

of material that has been transported by advection over
time to a farther position.

2.3 Model Identification

Incremental model identification in its extent-based form
consists in two steps: first, measured concentrations are
transformed into individual contributions (called extents)
of each dynamic effect; in a second step, the rate expres-
sions are identified one at a time and the corresponding
rate parameters are estimated.

If concentrations are measured at P positions and H time
instants and the rank condition associated with transfor-
mation (4) is satisfied, these measurements can be trans-
formed into rf + m variant contributions, namely, the
extents x̃r,f (z, t) and x̃m,f (z, t), where the superscript (̃·)
is used to denote a quantity associated with measurements.
Each extent is used to identify the corresponding rate
expression rf,i or φm,f,j by comparing, in the least-squares
sense, the ‘experimental’ extents, obtained by transforma-
tion of the concentration measurements via (4), and the
‘modeled’ extents, obtained by integration of the postu-
lated rate model via (5) or (6). The identification problems
are formulated as follows.

2 That is xr,f (z, 0) = 0rf , xm,f (z, 0) = 0m, and xr,f (0, t) = 0rf ,
xm,f (0, t) = 0m.
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