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Abstract: In this contribution, the effects of different degrees of uncertainty description are investigated
experimentally using an exothermic chemical reaction with safety constraint on the temperature. For
that purpose, two robust trajectories are designed that respect the artificially created uncertainties of
the experiments either coarsely using a single multivariate normal distribution (1GMD) or in a more
detailed fashion using a Gaussian mixture density (GMD) consisting of 32 multivariate normal densities
(32GMD). For the optimization, the uncertainties are propagated using the unscented transformation.
Both trajectories were run 71 times in an open-loop manner. The more detailed trajectory (32GMD) leads
to a 9% higher yield without increasing the risk of constraint violation. Furthermore, many experimental
realizations of two robust closed-loop process control schemes are being compared. They differ again
only in the degree of the underlying uncertainty description. Although the frequent corrections of
the controller marginalize the advantage of a more detailed stochastic process prediction, the 4GMD-
controller still allows for 3% more educt conversion compared to the 1GMD-controller.
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1. INTRODUCTION

Technical processes are influenced by a variety of uncertain
input and model parameters. The variation of these values often
has a significant impact on the development a process. The
specific process behavior is especially important when safety
constraints come into play. While the exact values of the uncer-
tain parameters are not known, their probabilistic description
is often available. In most cases, normal densities are used to
reflect the uncertain parameters. In order to obtain a prediction
of the uncertainties, the normal densities have to be propagated
through the nonlinear model equations. A numerically efficient
stochastic simulation is the Unscented Transformation (UT)
presented by Julier and Uhlmann. It represents each uncertain
parameter by its mean value and two so-called sigma-points.
The statistical moments of the output are calculated by solving
the model equations for the mean vector as well as for all sigma-
points and applying an explicit formula on these solutions. It
thus corresponds to a gradient-free approximation of 2nd order
[Julier and Uhlmann (1996); Julier et al. (2000); Nørgaard et al.
(2000); van der Merwe (2004)].

The method is limited, however, in that the process variables are
only represented as normally distributed, and, thus, being sym-
metrically uncertain. In nonlinear systems, however, normally
distributed inputs will inevitably lead to distorted, asymmetri-
cal probability densities. In order to describe arbitrary process
input densities, and to better account for effects in nonlinear

⋆ A version in German language of this contribution has been presented in
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density propagation a Gaussian mixture density (GMD) can be
used [Rossner et al. (2010)]. As here each individual density has
a lower variance, nonlinear deforming effects will be less pro-
nounced during propagation. A linear combination of normal
densities can be simulated by superposition of the Unscented
Transformations of the individual densities. This method has
been proposed before [Rossner et al. (2010)] to design robust
processes. Results, as with other methods, have been presented
so far only with simulation studies. Hence, the primary goal of
this work is to give an experimental validation.

In this contribution, the impact of different degrees of un-
certainty description, single multivariate normal density and
Gaussian mixture density, on open- and closed-loop process
control is investigated experimentally. For that purpose a fully-
automated semibatch reactor for the catalytic decomposition of
hydrogen peroxide H2O2 is set up. Defined disturbances on the
initial amount of catalyst V0 and the cooling temperature TM are
introduced to the individual process runs. Over all process runs
these disturbance samples are normally distributed. Moreover,
an upper safety-constraint on the reactor temperature is intro-
duced. This limits the production rate of the exothermic process
and the process result, thus, highly depends on the prediction of
the probability density along that constraint. If an overestima-
tion of its variance can be avoided, the production capabilities
can be better exploited and more yield can be expected.

In the first part of this contribution, the fully-automated chemi-
cal reactor is presented and the underlying mathematical model
is introduced. Subsequently, the experimental results of both ro-
bust open-loop process designs (TP), 1GMD-TP and 32GMD-
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Fig. 1. P&I-Diagram of the automated reaction system. 01: Re-
actor temperature. 02: Thermostat temperature. 03: Cool-
ing temperature, supply. 04: Cooling temperature, return.
05: Feed Temperature. 06: O2 volume flow. 07: Weight
of buffer tank, H2O2. 08: Voltage for dosing pump, Feed.
09: Magnetic valve to storage tank of educt. 10: Weight
of buffer tank, catalyst. 11: Voltage for dosing pump,
catalyst. 12: Magnetic valve to storage tank of catalyst.
13: Motor voltage for stirrer. 14: Magnetic valve to dump
vessel.

TP, are shown. The more detailed prediction of process un-
certainties using 32 normal densities leads to a 9% higher
productivity compared to the 1GMD design. Hereafter, online-
optimization is introduced, and, thus, the results of the closed-
loop process designs are presented. Due to the frequent cor-
rections of the controller uncertainties have less impact on the
process result. However, the control design based on the more
detailed uncertainty description still leads to a 3% higher yield
compared to the one based on a single normal distribution. The
contribution finally ends with a brief discussion of the obtained
results.

2. EXPERIMENTAL SETUP

In order to run a large number of specifically disturbed pro-
cesses with a high repeatability a fully-automated reactor sys-
tem has been set up. This allows for running the semibatch reac-
tion all around the clock, and, thus, enables the realization of all
process runs in a timely manner. For each disturbance sample,
the different control designs are run in an alternating fashion
to ensure that remaining non-modeled disturbances affect both
designs similarly.
Fig.1 shows the experimental setup with all sensors and ac-

tuators using a piping and instrumentation (P&I) diagram. The
jacket-cooled reactor has a diameter of d = 0.1m and holds a
maximum of 2L. When a process is initiated the disturbance
samples for the initial volume of catalyst V0 and the cooling
temperature TM are read from the database. In order to ensure
an isoperibolic 1 process campaign, the cooling temperature
TM is send to the thermostat (02) and the initial volume V0 is
used as set-point for a pump-scale-controller of the catalyst.
The dosage of the catalyst is realized with a tolerance of 0.1g.
In order to reach the starting reactor temperature T (t0) = TM

1 The disturbance is constant during each process run. Over all runs these

values are normally distributed.

more quickly, the stirrer (13) is activated with the dosage of
the catalyst. Moreover, before the catalyst enters the reactor
it is pre-cooled or -heated by a heat exchanger embedded in
the reactor cooling circuit. This heat exchanger is also used
to ensure a defined feed temperature Tfeed = TM. Once the
temperature of the catalyst has reached the cooling temperature
with a tolerance of ∆T0 = 0.5K the process is initiated. Now,
the sensor signals are being written to the database using the
sample interval ∆tmeas. At the same time, the feeding profile
qf of the specific process run is read from the database and
transferred to the feed-controller (07, 08) using a zero-order-
hold scheme. The stirrer is used to homogenize the reaction
mixture, to improve the heat transfer to the cooling jacket, and
to avoid an over-saturation of dissolved oxygen for a more
direct measurement of its evolution rate (06) during the model
identification experiments (not shown). Once the end of the
process tend is reached, the reaction will be cooled down to the
exit temperature Tab and then released via the magnetic relief
valve (14). The weight controlled buffer tanks for educt H2O2

and the catalyst are automatically refilled by opening the valves
(9,12) to the tanks. Because the tanks are positioned higher
than the buffer vessels this procedure is driven by hydrostatic
pressure. A new process cycle is initiated as soon as the control
system is connected to the next prepared database.

3. PROCESS MODEL

The chemical decomposition of hydrogen peroxide (H2O2, In-
dex ’hp’) involves at least four substances. Due to the presence
of potassium iodine (PI) the educt H2O2 will be catalytically de-

composed into the products H2O(l) (Index ’w’) and O
(g)
2 (Index

’o’). Oxygen leaves the reactor as exhaust gas. The exothermic
reaction has reaction rate r and reaction enthalpy (-∆HR). It can
thus be written as:

H2O2
PI−−−→
r

H2O +
1

2
O2 + (−∆HR) . (1)

In this reaction scheme, PI is modeled as a perfect catalyst that
is not being consumed. This is a slight simplification compared
to the more complex reaction scheme of the Bray-Liebhafsky
reaction [Bray and Liebhafsky (1931); Liebhafsky and Moham-
mad (1933); Schmitz (2011)] which also involves other sub-
stances, e.g., the formulation of Iodine I2. The reaction enthalpy
in (1) is approximately (−∆HR) = 100.4 kJ/mol (Steudel et al.
(2008)). Since both educt and catalyst concentration influence
the reaction rate r, the rate has been modeled as a reaction of
second order:

r = k0 e
−EA
RT chp cPI

[
mol

Ls

]

. (2)

Here, chp and cPI are the molar concentrations of hydrogen
peroxide and potassium iodine, respectively. The constants k0 ≈
109 L/mol/s and EA ≈ 54kJ/mol (Liebhafsky and Mohammad
(1933)) represent the rate factor and the activation energy, re-
spectively, and allow for the temperature depending description
of the reaction rate according to Arrhenius. The factor k0, how-
ever, will still be treated as a free parameter in order to create
a degree of freedom for the model identification based on the
obtained data.

Mole Balance
Based on the description of the reaction rate r the amounts of
the reactants can be balanced. In a semibatch process the rate
of the amount ni, ṅi, of substance i depends on the reacting
amounts ṅR,i as well as the feeding ṅf,i:
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