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a b s t r a c t

A full-field Digital Image Correlation (DIC) method with integrated Kriging regression is presented in this
article. The displacement field is formulated as a best linear unbiased model that includes the
correlations between all the locations in the Region of Interest (RoI). A global error factor is employed
to extend conventional Kriging interpolation to quantify displacement errors of the control points. An
updating strategy for the self-adaptive control grid is developed on the basis of the Mean Squared Error
(MSE) determined from the Kriging model. Kriging DIC is shown to outperform several other full-field
DIC methods when using open-access experimental data. Numerical examples are used to demonstrate
the robustness of Kriging DIC to different choices of initial control points and to speckle pattern
variability. Finally Kriging DIC is tested on an experimental example.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past three decades several different methods have been
developed and successfully applied in Digital Image Correlation (DIC).
These methods belong to two general classes, that is, local (subset-
based) methods and global (full-field) techniques, both of which have
been used extensively in different applications. The local approach is
perhaps the better established of the two because of its simplicity
and suitability to parallel computation [1], but lacks inter-subset
continuity and is more sensitive to measurement noise than the
global approach. Consequently it is necessary to apply smoothing as a
post-processing operation to measured displacements before com-
puting strain results [2]. Alternatively, the global approach imposes
certain constraints and treats the Region of Interest (RoI) as a whole,
thereby enabling smooth displacement fields to be achieved together
with good sub-pixel accuracy. The same level of sub-pixel accuracy is
achievable by the global approach, more efficiently than the local
approach, which requires subset overlapping [3] with multiple
processing of the same data and increased computational cost.

Full-field DIC methods include: Finite Element (FE) based meth-
ods [4–9]; the Extended FE method, known as XFEM, [10–13];
B-Spline methods (NURBS) [14,15] and Spectral methods based on
spatial Fourier transforms [16–18]. DIC techniques aim to produce an
accurate and reliable displacement field through the computed
correlation of deformed speckle patterns with a reference image.

This process requires the use of shape functions to describe the
displacement field in terms of grey-scale values determined from
individual pixel intensities within a subset or RoI. Of course, it is
generally not possible to design a shape function that perfectly
matches the actual displacement field in a particular application.
However, the Kriging prediction has the advantage that it is based
not only upon regressing certain parameters on discrete measure-
ments, but also on the correlation of neighbouring samples. The
fitting residual is represented by a Gaussian random process resulting
in a best linear unbiased prediction. This represents lack of knowl-
edge of the true displacement field and is not related to measure-
ment error. The choice of a Gaussian random process is analogous to
the choice of a Gaussian randomvariable in statistics: it is analytically
tractable, flexible and frequently correct. Unlike other full-field shape
functions that normally require an artificial control grid, the Kriging
formula can generate the control grid for a RoI automatically on the
basis of its estimated Mean Square Error (MSE). In addition it is
possible to adapt the Kriging formula to account for imperfect
sample-point data due to measurement noise that would otherwise
be reproduced exactly (by conventional Kriging interpolation)
because of perfect correlation of the sample point with itself. This
adaptation, known as Kriging regression, will be described in detail
in Section 3.

In this article Kriging regression is integrated into the classical full-
field DIC algorithm. The full-field displacement estimate is obtained
by training the Kriging model using increasing numbers of sample (or
control) points at each step until the MSE at untried sites (between
the control points) is deemed to be acceptably small. At the end of
this process the displacements at the untried sites are found in terms
of the complete system of control-point displacements. Kriging
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regression generally outperforms the classical FE and B-spline meth-
ods where untried-site displacements are determined only in terms
of several neighbouring control points. Fig. 1(a) illustrates this point,
where it is seen that the inner-point displacement is determined by
only four nodal displacements when using the Q4-FE shape function
[19], possibly resulting in abrupt ridges at the element bound-
aries. When using the B-spline method, the inner-point displace-
ment, shown in Fig. 1(b), is given in terms of a greater number of
nodal displacements, but shape-function remains local to the inner
point. The Kriging shape function is genuinely global, as shown in
Fig. 1(c) where the inner-point displacement is given in terms of
control points distributed over the entire RoI.

In this study, three case studies are used to test the perfor-
mance of the proposed Kriging DIC method. In the first example, a
two-directional rigid body translation is applied and a fixed
regular control grid is used. This example provides the basis for
a comparison of Kriging DIC with Q4-FE DIC and Cubic Spline DIC.
In the second case study using irregular, adaptive control grids and
FE-generated displacement fields, based on different numerical
generation of speckle patterns, the robustness of Kriging DIC to
initially chosen control points and speckle pattern variability is
tested. Finally, in the third case study Kriging DIC is applied to a
full-scale experimental structure and results are compared to
those obtained from a commercial DIC system.

2. Review of the full-field DIC method

Full-field DIC is considered for the case of a two-dimensional
image where the unknown displacement field uðx; yÞ; v x; yð Þð Þ is to
be determined at spatial coordinate ðx; yÞ. The displacement
uðx; yÞ; v x; yð Þð Þ may also be understood as the optical flow from a
reference image f ðx; yÞ of speckle-pattern intensity to its corre-
sponding deformed image gðx; yÞ. Then the displacement field may
be estimated by minimising the objective function,

η u; vð Þ ¼
Z
Θ
g xþuðx; yÞ; yþvðx; yÞð Þ� f ðx; yÞð Þ2dΘ ð1Þ

where Θ denotes the region of interest (RoI) in the reference image.
In practice, the continuous displacement field uðx; yÞ; v x; yð Þð Þ

may be approximated by a linear combination of basis functions of
finite dimension n, expressed as

uðx; yÞ � ∑
n

j ¼ 1
μjðx; yÞρuj

vðx; yÞ � ∑
n

j ¼ 1
μjðx; yÞρvj

ð2Þ

where μjðx; yÞ; j¼ 1;2;…;n are the kernel functions and ρuj
;ρvj ;

j¼ 1;2;…;n are the combination coefficients. Since g xþuðx; yÞ; yþð

vðx; yÞÞ is an implicit function of uðx; yÞ; v x; yð Þð Þ, the Newton
method may be applied to solve the minimisation problem.
Therefore, an approximate solution of the full-field displacement,
uðx; yÞ; v x; yð Þð Þ, may be obtained by iteration [5,6,15,20]

Mi
w ρiþ1

w �ρi
w

� �
¼ bi

w; wA u; vf g ð3Þ

where Mi
u;M

i
v are n� n matrices and bi

u;b
i
v are n� 1 vectors, with

components given by

mjk
� �i

w ¼
Z
Θ

μjðx; yÞ
∂gðxþui; yþviÞ

∂z

� �

� μkðx; yÞ
∂gðxþui; yþviÞ

∂z

� �
dΘ ð4Þ

and

bj
� �i

w ¼
Z
Θ
μjðx; yÞ

∂gðxþui; yþviÞ
∂z

� f ðx; yÞ�gðxþui; yþviÞ
� �

dΘ ð5Þ

where zA x; y
� 	

when wA u; vf g respectively and j; k¼ 1;2;…;n.
The gradient ∂gðxþui ;yþviÞ

∂z in Eqs. (4) and (5) is in principle
updated at each iteration. However, as proposed by Sutton
[21,22], the grey-level gradients may be calculated from the
reference image rather than the deformed image without loss of
accuracy, that is, ∂gðxþui ;yþviÞ

∂z ¼ ∂f ðx;yÞ
∂z .

The interpolation functions in Eq. (2) are generally local piecewise
functions [14,23], for example, cubic spline or finite element shape
functions. The combination coefficients then represent the displace-
ments of a set of control points (or nodes). In this article, a different
linear modelling approach for the displacement field is investigated,
known as Kriging regression.

3. Kriging-DIC

The obtained displacement from Eqs. (2) and (3) is an approx-
imate solution on a linear subspace. In this Section, the approx-
imation residual ew x; yð Þ ¼w x; yð Þ�∑n

j ¼ 1μjðx; yÞρwj
;wA u; vf g; in

the DIC algorithm will be modelled as a Gaussian random field.
The true displacement field wðx; yÞ may be modelled as a

realisation of a random function Wðx; yÞ which combines a deter-
ministic regression model and a zero-mean stochastic field as [24],

Wðx; yÞ ¼ ∑
m

ℓ ¼ 1
cℓðx; yÞβℓþZðx; yÞ ð6Þ

where cℓðx; yÞ;ℓ¼ 1;…;m; are the regression functions, βℓ denotes
the ℓth regression parameter and Zðx; yÞ is a Gaussian stochastic field
with zero mean and covariance covðZðxj; yjÞ; Zðxk; ykÞÞ between

Fig. 1. Dependency relationship of one inner point (green square): (a) Q4-FE, (b) Cubic Spline, (c) Kriging – control points shown as blue circles.
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