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a  b  s  t  r  a  c  t

Flexural  resonators  operated  within  a fluid  are most  of  the  time  limited  by viscous  damping.  Nonethe-
less,  depending  on  the resonator  geometry,  significant  acoustic  damping  has  also  to  be  considered.  After
reviewing  the  main  theoretical  approaches  proposed  in  the  literature  to evaluate  acoustic  losses,  we pro-
vide useful  and  simplified  expressions  to quantify  their  corresponding  quality  factor.  Original  results  are
obtained  by  extending  well-known  methods  to  different  shapes.  We  also present  numerical  simulations
and  experiments  to  compare  and assess  the  validity  of  our  predictions,  and show  that  analytical  models
combining  both  viscous  and  acoustic  damping  can  give  reliable  values  for the  observed  quality  factors.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Flexural mechanical resonators are most of the time operated in
vacuum in order to minimize any coupling with the surroundings
that could affect their excellent resonance characteristics. Some
applications however require a complete immersion within a fluid
medium. For example, they are used for highly sensitive chemi-
cal sensing platform [1], but also for in-situ force measurements
such as the photo acoustic detection [2], the resonant optother-
moacoustic detection [3] or precise temperature measurements
[4].

In those cases, the surrounding fluid strongly modifies the char-
acteristics of the resonance and can dramatically reduce the sensors
performances compared with vacuum operation. It is now estab-
lished that the damping occurring within the fluid can be attributed
to several mechanisms, among which the most relevant ones are
viscous damping and acoustic radiation damping. These two  effects,
originating both from a fluid-structure interaction, rely on two
distinct physical properties of the fluid that are viscosity and com-
pressibility, and their contributions behave differently with respect
to the dimensions of the resonator.

Acoustic radiation damping is not frequently considered in high
quality flexural resonators. One of the main reasons is that a huge
majority of them are designed for applications in the inertial or
time-frequency domains, i.e. under vacuum operation where no
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fluid-structure occurs. For other applications requiring an immer-
sion within a fluid, viscous damping has been shown to be negligible
for macroscopic resonators because of their low surface over vol-
ume  ratios. Their acoustic properties have been investigated to
obtain reliable expressions for the total quality factor [5–7]. For
smaller resonators, the number of geometries reported up to now
remains quite limited; and acoustic damping is most of the time
hardly noticeable if not negligible. Nevertheless, acoustic damping
is still possible with specific geometries and can become compa-
rable with viscous damping; therefore a more detailed study is of
significant importance for any optimization purposes.

Finite element simulation softwares can quantitatively and
accurately predict the mechanical behavior of any type of resonator.
However, we will focus on analytical models in order to keep a good
physical insight. In the following, we  will restrain to the case of res-
onators made of beams with a circular or rectangular cross section,
since it almost covers all kind of existing structures.

A first complete analytical model including both viscosity and
compressibility has already been developed [8]. The result is exact
but only deals with infinitely thin cantilevers and fails to provide
either a direct physical insight of the compressibility effect or a
simplified formula for the quality factor. Moreover, the approach
does not include a possible static wall nearby, which is necessary
to deal with viscous damping for resonators made of several beams
such as tuning forks [9].

Other existing analytical treatments currently available in the
literature generally assume that the surrounding fluid acts as an
uncompressible medium [9,10]. The damping is then reduced to
the fluid viscous effects, for which analytical results give quite accu-
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Fig. 1. Schematic of the acoustic equivalence for the single beam resonator. (a) The geometrical cross section of the oscillating beam of width e and thickness l. The amplitude
of  the displacement along the y axis is denoted Ŵ (x) . (b) The corresponding point sources modeling of the beam, with S the strength of the source.

rate formulas for the quality factor. However, such an assumption
is not valid in some cases. It has been evidenced in the study of tun-
ing forks in gas [11], and more recently in cryogenic fluids [12,13].
In the latter example, it has been shown that commercial quartz
tuning forks immersed within liquid or gaseous helium at very
low temperature can provide various parameters such as viscos-
ity, pressure or temperature [14]. Under such conditions, acoustic
damping is not a negligible and has to be taken into account.

From a theoretical point of view, both viscous and acoustic
damping effects are accounted for in the Navier–Stokes equations.
However, no general analytical solution has yet appeared if both
sources of damping are considered simultaneously. Indeed, the
coupled equation system governing the behavior of the fluid on
the first hand and the motion of the resonator on the other hand
cannot be reduced into two independent equations.

A simplified approach consists in solving the two  problems in
a sequential way, which is an approximate way to force the inde-
pendence. The motion of the resonator is solved first assuming that
the surrounding fluid is uncompressible, leading to an analytical
expression of the damping only due to viscous effects. Then, the
motion of the resonator is used as a boundary initial condition for
the purely acoustic problem neglecting viscosity.

In this paper, we will generalize this sequential approach to any
flexural mechanical resonator made of beams with arbitrary rect-
angular or circular cross section, as well as investigate the validity
of our results with numerical simulations and experiments. We
also provide expressions for the quality factors, as well as simpli-
fied expressions to capture more easily the physics behind fluid
damping on resonators.

2. Theoretical model

2.1. The single beam model

We  first consider a single beam oscillating within a homoge-
neous fluid unbounded in space. Notations used in the following are
presented in Fig. 1. The motion of the resonator subject to viscous
damping only has already been solved using the Euler–Bernoulli
bending theory, so we will use directly the results obtained in this

previous work [9]. Let us remind the main assumptions concerning
the beam, which generally hold true for any flexural resonator:

• The beam’s cross section is rectangular and uniform over its entire
length L.

• The length of the beam L greatly exceeds its transverse dimen-
sions e and l.

• We consider only flexural modes of vibration in the y-direction,
whose amplitudes are supposed far smaller than dimensions e
and l. Plane sections hence remain plane and normal to the axis
of the beam.

• The material composing the beam is assumed isotropic and
homogeneous. Its young modulus E and density �b are constants.

Considering the surrounding fluid, we  suppose that:

• The fluid is incompressible with a homogeneous density �f and
dynamic viscosity �.

• The fluid is in the continuum regime [15] and unbounded in space.
The latter regime is defined by its Knudsen number Kn smaller
than 0, 01, ensuring that the Navier-Stokes equation are valid.

Under the previous assumptions, the position of the oscillating
beam Ŵ (x, �) in the y direction can be written on its nth eigen
angular frequency ωn as Eq. (1).

Ŵ = Ŵ (ω)�n (x) =
[∫ L

0

dx̂Fdrive (x, ω)�n (x)

]

12jL4Qv (ωn)

Ee3l˛4
n

∫ L
0
�2

n (x) dx
�n (x) (1)

where ˛n and �n are respectively the characteristic coefficient and
the normalized deformation of the beam when oscillating on its nth

mode of vibration. Their values can be found in any textbook about
dynamic beam flexure, and two  useful cases are recalled in Table 1.
The viscous quality factor Qv has been derived in the previous study
[9]. Function ̂Fdrive is the excitation force acting on the beam in the
y direction other than the viscous forces.

In this second step, we suppose that the motion of the beam
expressed in Eq. (1) is given. The strategy to derive the acoustic
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