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a  b  s  t  r  a  c  t

The  damping  of  an  oscillator  is, next  to  the  effective  mass  and  the stiffness,  one  of the  key parameters  that
determine  its  frequency  response  as well  as  its noise.  Since  there  are  numerous  different  applications
for  oscillating  microstructures,  there  are also numerous  requirements  for the  shape  of  the  respective
resonance  peak.  While  fabricating  the  right  mass  and  stiffness  to obtain  a desired  resonance  frequency
is,  in  general,  a  basic  task,  designing  a micro-oscillator  featuring  an intended  damping  is not  trivial.
We  present  a way  of  utilizing  the surrounding  air to  adjust  the  passive  damping  of a laterally  oscillating
micromechanical  system.  This  is shown  to hold  in a relatively  wide  range  by  comparing  analytical  models
and  finite  volume  method  simulations  with  measurements  of  a  number  of  micro-electro-mechanical  test
structures  with  optical  readout.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Over the last decades a vast number of microelectromechan-
ical systems (MEMS) has evolved which are intended for a wide
field of applications. These include micromachined devices such as
microphones, gyroscopes, micromirrors, accelerometers or vibra-
tion sensors. Since most of them are based on a periodically moving
mass, they have in common that they can be described as damped,
driven, harmonic oscillators. Apart from an external driving force
Fext, their main properties, therefore, depend on three parameters:
the stiffness k, the seismic mass m and the damping parameter d.

In terms of the damped, driven, harmonic oscillator, the stiff-
ness and the mass determine the resonance frequency ω0 = 2� f0 =√

k/m. Mass and damping parameter compose the decay con-
stant � = d/2m.  All three together determine the so-called quality
of the system denoted by the Q-factor Q =

√
m k/d = ω0/2� which

is a measure for the oscillator’s stored kinetic energy compared to
its dissipation. A high quality corresponds to low dissipation and
shows up in a high resonance peak and vice versa. The damping
is directly proportional to the amount of dissipation. Many appli-
cations favor a high quality factor. An example for this is a device
based on resonant sensing, where the measurement frequency is
equal to the resonance frequency. This kind of sensor depends on a
high resonance peak to achieve an optimal output signal. Thus, the
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damping is required to be small in that case. In other applications,
such as vibration sensing, however, one might prefer a low quality
factor Q � 1, i.e. higher damping. This is due to the inherent sup-
pression of ringing and extension of the measurement regime. From
the point of view of engineering, one typically wants to provide the
device to be fabricated with the optimal set of parameters to assure
optimal transfer properties for the given application. Therefore,
modeling of these quantities is key.

The mass is usually the most basic parameter to design. It is
given by the device geometry and the mass density of the used
material and, therefore, no extensive modeling has to be done. The
stiffness is also a well-understood quantity. Analytical models such
as the Euler–Bernoulli beam theory [1] provide a deep insight. In
the case of sophisticated layouts of devices or springs one can fall
back on numerical approaches such as finite element method (FEM)
simulations.

Accessing the damping, on the other hand, can be very challeng-
ing. This is partly due to the many different types of contributions
composing the parameter d. The collective term “damping” refers to
all mechanisms that lead to a dissipation of the oscillation energy.
This includes effects such as anchor losses [2] where the oscilla-
tion couples to the surrounding or thermoelastic damping [3,4]
where the bending of the spring effects a warming of the material
at the compressed side and a cooling on the opposing extended
side causing a force acting against the oscillation. More impor-
tantly, air damping [5–10] occurs, where the dissipation is caused
by the induced flow of the air surrounding the seismic mass. Even
if the environmental conditions allow for ruling out some of the
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Fig. 1. Micrograph of a test structure. The seismic mass (width w = 2 mm,  length
l  = 2 mm)  is etched into the 45 �m thick device layer of an SOI wafer. It is suspended
on  four U-shaped springs. The rectangular holes (10 �m × 100 �m) are required for
the optical readout. The mass will be excited only in x-direction. The zooms show
an  enlarged depiction of a spring and some holes.

dissipation effects, the damping might still be hard to model accu-
rately. In the case of a MEMS  operated in air at ambient pressure, the
air damping is usually the largest contribution and overshadows
the others by far. Due to the non-linearity of the governing equa-
tions of fluid flow, accurate modeling can be hard even for basic
geometries. Thus, an analytical approach can in most cases only be
applied in a limited way. Numerical computations or a combina-
tion of numerics and analytics [11] are, thus, usually the method of
choice.

In Section 2, we introduce the kind of test structures for which
the damping shall be designed. Afterwards in Section 3, the analyt-
ical and numerical approaches to the modeling of the air damping
as well as their application to the design of a series of lateral
microstructures are discussed. Subsequently, the measurement
setup is explained and the results are compared to the models (Sec-
tion 4). Finally, we conclude the paper and give a short outlook in
Section 5.

2. The optical vibration sensor

2.1. Sensor principle

The kind of microstructure we want to fine-tune the air damp-
ing for is the micro-opto-electro-mechanical system (MOEMS)
depicted in Fig. 1. We  use this type of MOEMS  for vibration sensing.
It was introduced in [12] as a promising alternative to standard
capacitive sensors. The MOEMS  consists of two arrays of rectangu-
lar holes, one is made of Chromium patterned by physical vapor
deposition (PVD) onto a glass chip, the other is etched into the
device layer of a silicon on insulator (SOI) wafer by a standard Bosch
deep reactive ion etching (DRIE) process. The resulting two  wafers
are bonded onto each other in such a way that the two  grids form
an array of apertures (see Fig. 2). Since the grid in the silicon chip
is fabricated into the seismic mass of a suspended plate oscillator,
any movement of the plate will increase or decrease the open area
of the aperture and, therefore, the light flux passing through. For a
displacement ıx of the seismic mass, the change in the open area
is given by ıAopen = ˛0 ıx = Nh lh ıx. Note that ıAopen can be positive
or negative, depending on the sign of ıx. Due to the large number

Fig. 2. Schematic showing the mechanism of the light flux modulation. The light
coming from the LED passes through the apertures in the Cr layer. Similar apertures
are  etched into the seismic Si mass (see Fig. 1). If the mass moves, the amount of
light registered by the phototransistor will change.

Nh and the dimensions (length lh, width wh) of the holes, this kind
of opto-mechanical transduction features a very high sensitivity.
The light flux that has passed through the grids ı� = ˛1 ıAopen is
then converted into an electric current ıi = ˛2 ı� and ultimately
into a voltage ıU = ˛3 ıi by a photodiode or phototransistor and the
readout electronics, respectively. The final transduction of the dis-

placement into voltage is then given by ıU =
∏

i

˛i ıx = g ıx which

defines the sensitivity or the gain g of the sensor.

2.2. Transfer characteristics

The setup for testing the MOEMS  which is described with more
detail in Section 4 involves an external actuation K. This is provided
by a custom made shaker unit [13]. The actuation is time harmonic
with angular frequency ω and unidirectional in x-direction ex = (1,
0, 0) and can therefore be written as K = K ei ω t ex with i = √−1 being
the imaginary unit. In this configuration, the driving force acts onto
the suspension which is connected rigidly to the Cr grid on the
glass chip and via springs to the seismic mass of the MOEMS. Thus,
the driving force at first effects a deflection of the suspension xs(t)
which in turn couples to the deflection of the seismic mass xm(t) of
the harmonic oscillator. Since the change of the open area ıAopen

which is proportional to the difference of the deflections of suspen-
sion and mass ıx(t) = xm(t) − xs(t) = x(t) is the quantity we observe,
the equation of motion can be written as

m
∂2

x(t)
∂t2

+ d
∂x(t)

∂t
+ k x = m

∂2
xs(t)
∂t2

. (1)

The term on the right hand side of this equation corresponds
to the actuation, i.e. m ∂2xs(t)/∂t2 = K ei ω t. Dividing Eq. (1) by m
and applying an exponential ansatz for the relative displacement
x(t) = X(ω)ei ω t leads to

(−ω2 + 2i � ω + ω2
0)X(ω) = −Kω2. (2)

Multiplying the function X(ω) with the propotionality factor g
which takes into account the whole opto-electro-mechanical trans-
duction explained in the previous subsection and dividing off the
actuation force amplitude leads to the complex valued, second
order transfer function of the whole system.

A(ω) = g

K
X(ω) = g

1 − 2i(�/ω)  − (ω2
0/ω2)

.  (3)
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