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a  b  s  t r  a  c  t

An accurate  collimation  technique  based  on  a double  grating  system  is  proposed.  Transversal  displace-
ment  of the grating  is  not  required  and  then,  automatic  single-frame  processing  can  be performed.  Talbot
self-images  are  projected  onto  a  mask  composed  by several  shifted  diffraction  gratings.  A Lissajous  figure
is  obtained  with  the  signals  acquired  by a CMOS  camera  where  the  mask  is  simulated  by  software.  The
collimation  degree  is  determined  by  measuring  the  ellipticity  of the  Lissajous  figure.  Visual  or  automatic
procedures  for  simple  and  accurate  collimation  of a light  source  are  proposed.  Experimental  results  are
obtained which  show  a resolution  of  ı�  ≈ 4.16 �rad in the  divergence  of  the  beam  when  a  lens  with focal
length  f = 25  mm  and  diameter  D = 20 mm  is used  for collimation.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Accurate beam collimation is essential in experiments and
applications. A high number of techniques have been proposed and
developed for testing the collimation degree of beams. Most of them
are based on interferometry [1–5] or on self-imaging techniques
[6–9]. In addition, several techniques have been proposed in the last
years [10–15]. In particular, several collimation methods based on
self-imaging that do not need a lateral displacement of the grating
have been proposed, being these devices simple an stable. In [11]
one circular grating is used instead of a linear grating and in [12]
the collimation degree of the beam is obtained by measuring the
period of one self-image produced by an amplitude Ronchi grating
and comparing it with that of the grating. Nevertheless, the experi-
mental configuration needs to be performed very accurately, since
the period of one self-image is compared to the period of the grat-
ing and misalignments or environmental variations may  produce
wrong and inaccurate results. For example, small angular misalign-
ments of the grating may  produce an improper determination of the
collimation degree.

Another robust and accurate technique was proposed in [10]. In
this technique the light beam passes through a diffraction grating
of period p and a mask located at a Talbot plane of the grating, situ-
ated at zT = 2p2/�, [3,8,16]. The mask is composed by two diffraction
gratings with the same period p and displaced laterally a dis-
tance p/4. Two photodetectors are placed just behind each grating
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centered at a certain distance from the optical axis. Two  signals are
obtained in the photo-detectors by displacing the grating laterally.
When the beam is collimated, both signals are shifted 90◦ and the
Lissajous figure results a circle. When the beam is not collimated
the phase shift between the two signals is not exactly 90◦ and the
Lissajous figure becomes elliptical. The collimation degree can be
determined automatically by measuring the phase shift between
both signals. The main objection to this technique is that a contin-
uous transversal displacement of the grating is required in order to
obtain the complete Lissajous figure.

In this work we  develop a new collimation technique based on
that proposed in [10]. The beam collimation is achieved by using a
diffraction grating and a mask formed by several amplitude Ronchi
gratings with known lateral shift. The light beam passes through
the grating and the mask, and several photodetectors (or a CMOS
camera) are used to obtain a Lissajous figure from the data. The
collimation degree of the beam is related to the ellipticity of the
Lissajous figure. However, the shape of this Lissajous figure is not
simple and we must fit the experimental data to a rectangle/ellipse
curve [17]. We  observe that for a point light source and consider-
ing geometrical approach, the Lissajous figure is almost a rectangle
with curved corners. Nevertheless, diffractive effects make the Lis-
sajous figure more rounded. Then, to determine its ellipticity, we  fit
the Lissajous figure to a rectangle/ellipse curve. The fitting param-
eters are used to measure the collimation degree. The parameters
are obtained with a simple computation and automatic or visual
collimation can be easily performed with this technique. When a
point source is collimated using a lens with focal length f = 25 mm
and diameter D = 20 mm,  a resolution of ı� ≈ 4.16 �rad in the diver-
gence of the beam is obtained.
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Fig. 1. Sketch of the proposed technique for beam collimation. z0 is the distance
from the emitter to the lens, whose focal length is f, z1 is the distance from the lens
to  the diffraction grating G, �z  = |z0 − f| is the distance from the emitter to the focal
point of the lens, and z2 is the distance from the grating to the mask M,  where also
photodetectors are placed behind.

Summarizing, the technique is explained and an analytical
approach is performed in Section 2. In Section 3 we  perform a
numerical simulation of the technique and finally, in Section 4
we obtain experimental results which are in agreement with the
theoretical frame.

2. Analytical approach

Let us consider the set-up shown in Fig. 1. It consists of a light
source of wavelength � placed at a distance z0 from the colli-
mation lens with focal length f, a diffraction grating G with period
p, and a mask M formed by several amplitude Ronchi gratings. The
diffraction grating is placed at a distance z1 from the lens and its
transmittance is given by t(x) =

∑
nan exp(i q n x), where n are inte-

ger numbers, an are the Fourier coefficients of the grating, and
q = 2�/p. For amplitude gratings, high-contrast self-images with the
same period as the grating are observed at multiples of the Talbot
distance, which is given by zT = 2p2/�. At odd multiples of the semi-
Talbot distance, (2N  + 1)zT/2, self-images of inverse contrast also
appear. These odd self-images are also valid for applying the tech-
nique. When the emitter is exactly placed at the focal point of the
lens, �z  = |z0 − f| = 0, the beam after the lens is properly collimated
and the period of the self-images is equal to that of the grating. On
the other hand, when the emitter is not exactly at the focal plane,
�z /= 0, the intensity distribution at a distance z2 from the grating
results in [10]

I(x3, z2) = I0
∑

n,n′
anan′ e

i q
1+˛z2

(n−n′)x3 e
−i q2

2k
(n2−n′2)

z2
1+˛z2 , (1)

where x3 is the coordinate parallel to the grating and perpendicular
to the fringes at the observation plane, I0 is the intensity of the
incoming beam, k = 2�/�, and  ̨ ≈ − �z/f2. As can be observed in the
first exponential factor, the period of the self-images, p�z, depends
on the collimation degree as

p�z = (1 + ˛z2) p ≈
(

1 − �z

f 2
z2

)
p. (2)

When z2 = l zT (l integer) the contrast of the self-images is maxi-
mum.  Nevertheless, the technique does not need the observation
plane to be exactly a Talbot plane to work, as we demonstrate in
Section 3. The variation in the period shown in Eq. (2) produces
a local phase shift of the fringes at locations out of axis. This
phase shift can be easily detected with another diffraction grat-
ing with the same period placed at a distance z2 from the first
grating. Instead of a simple grating, we propose the usage of the

complex mask shown in Fig. 2a. It is formed by M windows placed
out of axis. Each window presents a diffraction grating with the
same period as the grating G and a certain lateral displacement
�m, m = 1, . . .,  M.  The transmittance for each window is therefore
t′
m(x3) =

∑
rar exp[i (q r x3 + �m)], being r integer numbers, ar the

Fourier coefficients of the grating and q = 2�/p.
Then, the intensity distribution after each window m is obtained

by multiplying the intensity distribution times the transmittance,
Im(x3, z2) = I(x3, z2) · t′

m(x3), resulting in

Im(x3, z2) = I0
∑
n,n′,r

aranan′ e
i q

1+˛z2
(n−n′)x3 e

−i q2

2k
(n2−n′2)

z2
1+˛z2 ei(qrx3+�m).

(3)

A photodetector is placed after each window in order to obtain
the total intensity. Therefore the signal obtained with each pho-
todetector results in

Sm
A,B =

∫ xmax

xmin

Im(x3, z2)dx3, (4)

where xmin = xm − �x/2 and xmax = xm + �x/2, xm is the central posi-
tion of the mth  photodetector and �x  is the photodetector size.
Sub-index A and B determine pairs of related signals, as we  will
explain forward. Solving Eq. (4), the intensity collected by each
photodetector is given by

Sm
A,B = I0�x

∑
n,n′,r

aranan′ e
−i q2

2k
(n2−n′2)

z2
1+˛z2 ei�m

× sinc
[

q�x

2

(
n − n′

1 + ˛z2
+ r

)]
, (5)

where sinc x = sin x/x.
A point in the Lissajous figure is obtained using two  signals, Sm

A
and Sm

B , with a phase shift of 90◦ between them, that is, displaced
laterally p/4. In Fig. 2a we  can see an example of the proposed mask
with M = 16 windows (8 points of the Lissajous figure). Windows
on the left side correspond to Sm

A and windows on the right side
correspond to Sm

B .
The best option is to include the highest number of windows

as possible since then we  will have more Lissajous points to deter-
mine the ellipticity. Nevertheless, a trade-off between the number
of windows and the total size is required since, when the windows
are very small, the signal/noise ratio

(
S/N

)
obtained with each

photodetector decreases. We  have considered different number of
windows and we have selected the option of M = 16 windows as
the best one for our set-up. Then, the mask is formed by diffraction
gratings displaced 0, 45, 90, 135, 180, 225, 270, and 315 electrical
degrees for windows on the left, Sm

A , and 90, 135, 180, 225, 270, 315,
0, and 45 for windows on the right, Sm

B .

3. Numerical simulations

The Lissajous figure can be analytically obtained using Eq. (4) but
we can use also a numerical approach. We  have used a fast Fourier
Transform based direct-integration method, [18], which uses the
Rayleigh–Sommerfeld approach to determine the intensity distri-
bution at the observation plane placed at a distance z2 from the
grating. Using this numerical approach, the optical intensity after
the mask is shown, Fig. 2b. This result is very similar to that obtained
with the analytical approach, Eq. (5).

The points of the Lissajous figure are obtained integrating the
intensity distribution for each window. The left windows are for the
x-coordinate, Sm

A , and the right windows are for the y-coordinate,
Sm

B . In Fig. 3 we can see several examples of the Lissajous fig-
ure for the cases of non-collimated and collimated beam. The
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