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a  b  s  t  r  a  c  t

This article  established  a useful  method  of  solving  the  state  equation  of  fluxgate  sensor  in which  only
basic  detection  circuit  parameters  were used.  The  solution  of the  equation  was  given,  and  the  stability  of
the  solution  as well  as  critical  resistance  was discussed  carefully.  We  also  introduced  stability  condition
of  fluxgate  by  an  inequality,  the  physical  meaning  of  this  inequality  was  discussed  by  simplifying  it  with
maximum  energy  transfer  condition.  Experiments  on different  fluxgate  sensors  were  performed,  and  the
results  show  good  agreements  with  calculation  results.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Fluxgate sensor has been widely used for aeromagnetics, geophysical prospecting, and space exploration, because its advantages such
as low noise, low zero drift and long-term stability. The theory of fluxgate is an essential part for designing and developing fluxgate sensor,
and it has been developed by a lot of pervious works. Primdahl et al. [1] studied current output of short-current fluxgate. Russell et al. [2]
described the theory and numerical results of a capacitively loaded fluxgate sensor, and developed the theory of its stability in al. [3]. The
condition of parameters, that makes the response of current-output fluxgate sensors maximum, was  developed by al. [4].

Detection circuit of fluxgate sensor is not a typical LRC circuit because its inductance is not a constant. So the equation of detection circuit
is a nonlinear differential equation. Most of pervious works are based on Serson–Hannaford approximation [1], which is not necessary, and
they need to involve some simplified parameters or only have numerical results. In this paper we  use another method to get the theoretical
solution of detection circuit state, and found the stability condition as well as critical resistance. But the theoretical result is complex, so
some discussion of this article is based on the METC in al. [4] in order to show a simplified result.

From the aspect of energy, the steady-state of fluxgate sensor means the energy being transferred into detection circuit and dissipated
in it are equal. Ignoring the dissipation in magnetic core, which is usually very small (the equivalent resistance is no more than 5% of the
total resistance), only the resistance of detection circuit can dissipate the energy. It means that for any fluxgate sensor, once the resistance
is large enough, it can be stable. Thus for any fluxgate sensor there must exist a resistance, which we call as critical resistance,  can keep the
fluxgate sensor stable if the resistance of detection circuit is greater than it. This resistance was  measured accurately by experiments in
this paper. And theoretical results show that the critical resistance is related to all the parameters of fluxgate sensor. This relationship is
very complex, but if the phase matches the maximum energy transferred condition (METC), it will become very simple. And the physical
meanings of this relationship will be discussed.

∗ Corresponding author.
E-mail address: dapingcao@whu.edu.cn (D. Cao).

http://dx.doi.org/10.1016/j.sna.2015.07.013
0924-4247/© 2015 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.sna.2015.07.013
http://www.sciencedirect.com/science/journal/09244247
http://www.elsevier.com/locate/sna
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sna.2015.07.013&domain=pdf
mailto:dapingcao@whu.edu.cn
dx.doi.org/10.1016/j.sna.2015.07.013


Y. Cao, D. Cao / Sensors and Actuators A 233 (2015) 522–531 523

Fig. 1. The detection circuit scheme.

2. Derivation of the fluxgate equation

A typical fluxgate sensor detection circuit is shown in Fig. 1. The inductance of the detection coil L(t) has two value Ls and Ln, which
represents its saturated value and non-saturated value, respectively. The variation of L(t) is shown in Fig. 3a. R is the sum of DC resistance
of the detection coil and the load. The magnetic flux in the detection coil is �(t) [4],

�(t) = L(t) [i(t) + iex] (1)

where iex is the equivalent current of the external magnetic field that interacts with the detection coil, which can be expressed as:

iex = lHex

N
(2)

where l is the effective length of the detection coil, N is the number of turns of detection coil. So the equation of the circuit in Fig. 1 is:

d
dt
�(t) + 1

C
q(t) + Ri(t) = 0 (3)

Substituting (1) into (3) and considering the two states of fluxgate, assuming that the fluxgate is non-saturated in 0+∼t−1 and saturated in
t+1 ∼T−, leaves the result [4]:⎧⎪⎨

⎪⎩
Lnq′′(t) + Rq′(t) + 1

C
q(t) = 0 t = 0+ : t−1

Lsq′′(t) + Rq′(t) + 1
C
q(t) = 0 t = t+1 : T−

(4)

where T is excitation period, which means the period of the inductance variation. Because the detection coil flux and the capacitor charge
must be continuous, considering about (1):(
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It is difficult to solve (3), because of its non-linearity. However, in any single period of (4) it is not very hard to solve it. After considering
the continuous condition (5) (6), the solution in one period as well as the initial value of the next period can be calculated. So the entire
solution of any interval can be gotten by gathering all the periods in this interval.

The initial value of (k + 1)th period can be seen as a series:

ak+1 = ˇak + c (7)

This expression is derived in Appendix A.
And (7) can be rewritten as:

ak+1 +
(

 ̌ − 1
)−1
c = ˇ

[
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(
 ̌ − 1

)−1
c
]

(8)

which suggests that:

ak = ˇk
[
a0 +

(
 ̌ − 1

)−1
c
]

−
(

 ̌ − 1
)−1
c (9)

This is the initial state of the kth period, the solution of this period can be gotten by the same way as we did in previous steps.
The stability condition can be gotten by (9). Because c is a constant vector, for nonzero iex it is easy to demonstrate that it is not zero

nor infinite, so the stability of the solution just depends on the terms (ˇ-1)−1 and �k. They look like two different terms, but in fact the
stability of them is the same, we will demonstrate it and derive the stability condition in Appendix B.

According to (9) and Appendix B the stability condition is:
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]
− ˛s(T − t1) − ˛nt1 ≤ 0 (10.a)
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