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a  b  s  t  r  a  c  t

In general,  microrheology  is carried  out using  active  or  passive  particle-tracking  techniques.  In  the
present  paper,  a novel  technique  based  on  the out-of-plane  bending  vibrations  of  a  microcantilever
beam  immersed  into  a liquid  is proposed  for  microrheological  property  measurement.  We  propose  to
analytically  link  the  damped  beam  motion  with  the  rheological  properties  of the  fluid  in  order  to estab-
lish  a dynamic  rheogram  which  spans  at least  one  decade  of the  kiloHertz  frequency  domain.  The  latest
improvements  in  terms  of both  analytical  modeling  and  experimental  set-up  are  detailed,  along  with
a complete  explanation  of the  calculation  method.  Four  rheograms  of  Newtonian  and  non-Newtonian
liquids  obtained  from  the frequency  response  of  three  immersed  cantilevers  of  different  geometries  are
presented.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Exploring in situ microrheology is of fundamental interest and
is widely used in many applications, such as viscoelastic monitor-
ing of screen-printing ink and small-volume texture monitoring
of commercial foams or gels. This paper presents a method for
the improvement of viscoelastic property extraction for complex
fluids using a microcantilever as a dynamic rheometer oscillat-
ing in the kiloHertz domain [1]. This frequency range is difficult
to explore with classical dynamic rheometers due to inertial lim-
itations. MEMS  rheometers [2,3] (as well as other mechanical
resonators [4–6]) are good candidates as high-frequency rheome-
ters (for determining elastic, G′, and viscous, G′′, shear moduli vs.
frequency) by characterizing complex fluids at the microscale by
using very small amounts of liquid. In this context, dynamic rhe-
ology is performed by exploring the use of small-scale devices
and short characteristic times; this yields viscoelastic property
measurements on downscaled specimen sizes not obtainable with
traditional instruments, thereby forming the basis of “microrheol-
ogy”.

The concept of microrheology dates from 1922, when Freund-
lich and Seifriz used magnetic particles to study the elasticity of
gelatin gels [7]. Over the last two decades, rapid developments
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have occurred in this field [8–11]. Renewed interest in microrheol-
ogy has been increased by virtue of the technological innovations
in colloidal engineering, light scattering, position sensitive detec-
tion and video microscopy. Currently there are two main categories
of microrheology: active microrheology which involves the active
manipulation of the probe particle by external forces (e.g., optical
and magnetic tweezers and atomic force microscopy (AFM)) and
passive microrheology which relies on the Brownian motion (ther-
mal  fluctuation) of the probe particles (e.g. video (VPT) and laser
(LPT) particle tracking). Diffusing wave spectroscopy (DWS) is also
a common microrheological technique widely used to characterize
complex mixtures. As with other optical methods, DWS  is based
on the mean square displacement measurement which character-
izes Brownian motion and permits the calculation of an equivalent
microscopic and local shear modulus.

Microcantilevers vibrating in fluids are strongly influenced by
the surrounding fluid properties [12]; thus, the out-of-plane trans-
verse deflection response may  be mathematically linked to the
rheological properties of the surrounding liquid [13]. Based on
previous work [14,15], we present here a considerably enhanced
analytical model in order to (1) identify highly sensitive parameters
in the determination method; (2) eliminate a misleading simplify-
ing hypothesis in the solution; and (3) produce accurate rheograms
in the case of non-Newtonian fluids. We  also discuss the accu-
racy of the proposed method in order to examine the validity of
the high-frequency rheograms produced and to demonstrate proof
of concept. Using this new modeling approach, microcantilevers
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can probe the high-frequency viscoelastic behavior of fluids, espe-
cially the viscous characteristics, over a large frequency bandwidth
around the resonant frequency. One of the main advantages of our
technique is a faster response time than macrorheometers or other
microrheological techniques.

2. Modeling of microcantilever behavior in complex fluids

The Euler–Bernoulli differential equation (Eq. (1)) governing
the out-of-plane bending vibration of a microcantilever in a liquid
medium is used to model the sensing situation:

EI
∂4w(x, ω)

∂x4
+ jωg1(x, ω)w(x, ω) − ω2(g2(x, ω) + mL)w(x, ω)

= Fext(ω)ı(x − L) (1)

where E is the Young Modulus, I is the second moment of area of
the rectangular cross section, w (x,ω) is the vibration amplitude at
position x along the length axis, depending on the radial frequency
ω of the vibration, L is the beam length and the position of the free-
end of the cantilever, mL is the cantilever mass per unit length,
Fext (ω) is the applied force amplitude at the cantilever free-end,
ı is the Dirac function and g1 and g2 are, respectively, functions of
the dissipative and inertial part of the hydrodynamic force per unit
length, Fhydro, exerted by the fluid on the cantilever.

Assuming that g1 and g2 are independent of x [16], an exact
analytical solution of Eq. (1) exists for the free-end cantilever
deflection, w (L,ω). This solution gives a frequency-dependent
response partially influenced by the rheological properties of the
fluid:

w(L, ω) = 3Fext

k0A3L3

sin h(AL) cos(AL) − cos h(AL) sin(AL)
1 + cos h(AL) cos(AL)

(2)

where

A4 = ω2

EI

(
mL + g2(ω) − jg1(ω)

ω

)
, (3)

and k0 is the cantilever stiffness. In Eqs. (2) and (3), the hydro-
dynamic properties of the surrounding fluid are contained in the
terms g1 and g2 that are related to the imaginary and real parts of
Fhydro. However, Eqs. (2) and (3) do not allow the inverse problem
to be solved, meaning that g1 and g2 cannot be expressed explicitly
as functions of the different parameters and measurement data (ω,
w (L,ω), E, I, L, k0, Fext, mL). Nevertheless, these analytical equations
may  be used to fit the experimental mechanical spectra of micro-
cantilevers measured in known fluids. To do so, final rheological
properties must be linked to g1 and g2, respectively, depending on
the viscous and inertial parts of the hydrodynamic force:

Fhydro = ω2g2(ω)w(x, ω) − jωg1(ω)w(x, ω) (4)

The differential equation solution supposes that the viscosity �
(hidden in the terms g1 and g2) is a real number. Viscoelastic char-
acterization probed by microcantilevers is based on the assumption
that the fluid viscosity can have both a real and an imaginary part.
Consequently, the constant real term � corresponding to viscos-
ity is in this case replaced by a complex number �* accounting for
both the viscous and elastic behavior of viscoelastic fluids. (This
is classic within the context of rheological modeling [17,18].) This
notation is equivalent to considering a complex shear modulus G*
for a viscoelastic fluid instead of an imaginary shear modulus (see
details in Appendix A). Moreover, a fluid is rheologically defined
by a mass density �f, and values G′ and G′′ which are, respectively,
the elastic (real) part and the viscous (imaginary) part of the com-
plex shear modulus G* at each frequency. A Newtonian fluid such as
water has no elasticity (G′ = 0 Pa) and a viscosity with a frequency-
independent real part (� = 10−3 Pa s = 1 cP, in the case of water). This
defines a viscous modulus G′′ that linearly increases with frequency

(G′′ = �ω). A fluid is considered as complex if it does not satisfy those
two conditions.

In the case of thin rectangular microcantilevers, anexact equa-
tion of the hydrodynamic force has been developed, first by Sader
[16] and then fitted by Maali et al. [19] in order to express sep-
arately the real and imaginary parts of the hydrodynamic force
in terms of four constant coefficients (a1, a2, b1, b2) whose val-
ues are dependent on the Reynolds number range. The accuracy
of the fitting expressions are very good, provided that the appro-
priate Reynolds number range restriction has been verified. Based
on those works, analytical equations of g1 and g2 as functions of
the shear modulus were established [20]. Those expressions are
recalled in Eqs. (5)–(7) (due to physical considerations detailed in
Appendix A, a1 = 1 and a2 = b1):

g1 = DG′′ + B

√√
G′2 + G′′2 − G′ (5)

g2 =
C + DG′ + B

√√
G′2 + G′′2 + G′

ω
(6)

where

B = �b1

2
√

2
b
√

�f C = �

4
�f b2ω D = �b2

2ω
(7)

and b is the cantilever width.
Using Eqs. (2)–(7) and considering a fluid with a known rheo-

logical behavior and a microcantilever with known geometry and
material, it is possible to calculate the free-end deflection of the
microstructure at each frequency and to compare it with experi-
mental measurements. This also means that we are able to simulate
experimental data.

3. Inverse problem: method for determination of
rheological fluid properties

3.1. From g1, g2 to G′, G′′

With the expression of the hydrodynamic force from Sader
[16] it is impossible to dissociate analytically the real part from
the imaginary part, whereas it is possible with the approxima-
tion developed by Maali et al. [19]. Then, based on Eqs. (5)–(7),
the elastic and viscous shear moduli can be expressed. (Details are
presented in Appendix B.) The analytical expressions are

G′′ = g1

D
− B

D
√

2D

√√(
B2

D
+ 2(ωg2 − C)

)2

+ 4g2
1 − B2

D
− 2(ωg2 − C) (8)

G′ = 1
D

(
ωg2 − C − B2G′′

g1 − DG′′

)
(9)

The calculation of G′ and G′′ for any radial frequency ω can then
be performed provided that g1 and g2 can be estimated with enough
accuracy from the spectrum measurements. The calculation of the
terms g1 and g2 as a function of both the amplitude and phase of
the cantilever free-end deflection measurements is the purpose of
the next section.

3.2. Improvement of the inverse problem: from deflection to g1, g2

The calculation of g1 and g2 from the amplitude and phase of
the cantilever free-end deflection has been previously done by
Belmiloud et al. [13]. At that time, the authors have considered that
the analytical solution (Eq. (2)) of the differential equation (Eq. (1))
can be approximated by a second order mechanical low-pass filter
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