Accepted Manuscript

Title: N-methyl-2-pyrrolidone exfoliated graphene as highly sensitive analytical platform for carbendazim

Authors: Piaopiao Wei, Tian Gan, Kangbing Wu

PII:	S0925-4005(18)31422-9
DOI:	https://doi.org/10.1016/j.snb.2018.07.174
Reference:	SNB 25143
To appear in:	Sensors and Actuators B
Received date:	22-2-2018
Revised date:	3-7-2018
Accepted date:	31-7-2018

Please cite this article as: Wei P, Gan T, Wu K, N-methyl-2-pyrrolidone exfoliated graphene as highly sensitive analytical platform for carbendazim, *Sensors and amp; Actuators: B. Chemical* (2018), https://doi.org/10.1016/j.snb.2018.07.174

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

N-methyl-2-pyrrolidone exfoliated graphene as highly sensitive

analytical platform for carbendazim

Piaopiao Wei^a, Tian Gan^b, Kangbing Wu^{a*}

^a Key Laboratory for Material Chemistry of Energy Conversion and Storage,

Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong

University of Science and Technology, Wuhan 430074, China

^b College of Chemistry and Chemical Engineering, Xinyang Normal University,

Xinyang 464000, China

Highlights:

- Novel carbendazim sensing platform with wide linear range and low detection limit.
- Deep investigation on the signal enhancement and oxidation mechanism.
- Practical application in ground water, soil and cucumber samples with good accuracy.

^{*} Corresponding author. *E-mail address:* kbwu@hust.edu.cn

Download English Version:

https://daneshyari.com/en/article/7138749

Download Persian Version:

https://daneshyari.com/article/7138749

Daneshyari.com