Accepted Manuscript

Title: Porous Nanostructured GdFeO₃ Perovskite Oxides and their Gas Response Performance to NO_x

Authors: C. Balamurugan, S.-J. Song, D.-W. Lee

PII:	S0925-4005(18)31034-7
DOI:	https://doi.org/10.1016/j.snb.2018.05.125
Reference:	SNB 24781
To appear in:	Sensors and Actuators B
Received date:	14-1-2018
Revised date:	21-5-2018
Accepted date:	22-5-2018

Please cite this article as: C.Balamurugan, S.-J.Song, D.-W.Lee, Porous Nanostructured GdFeO3 Perovskite Oxides and their Gas Response Performance to NOx, Sensors and Actuators B: Chemical https://doi.org/10.1016/j.snb.2018.05.125

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Porous Nanostructured GdFeO₃ Perovskite Oxides and their Gas Response Performance to NO_x

C. Balamurugan^{1, 2}, S.-J. Song² and D.-W. Lee^{* 1}

 ¹MEMS and Nanotechnology Laboratory, School of Mechanical Systems Engineering, Chonnam National University, Gwangju 500757, Republic of Korea
² Ionics Laboratory, School of Materials Science and Engineering, Chonnam National University, Buk-gu, Gwangju 500-757, Republic of Korea

Highlights

- Mesoporous rare-earth orthoferrite (GdFeO₃) nanostructures were prepared by a facile one-step hydrothermal process.
- Structural effects of GdFeO₃ nanostructure on NO_x gas-response properties were systematically investigated.
- Mesosphere-like GdFeO₃ nanostructure exhibited the best gas-response characteristics to nitric oxide (NO) at 140 °C.
- NO gas-response mechanism of GdFeO₃ nanostructure was discussed.

Abstract

Gas sensing characteristics of rare-earth-based orthoferrite (GdFeO₃) mesoporous nanostructures were prepared by a facile one-step hydrothermal process. The structural analyses of the obtained materials showed sphere, leaf and flower-like nanostructured architectures. Further, the chemiresistive gas-response properties of the GdFeO₃ nanostructure were investigated with various combustible gases, such as nitric oxide (NO), nitrogen dioxide (NO₂), carbon monoxide (CO), ammonia (NH₃), hydrogen sulfide (H₂S), formaldehyde (HCHO), ethanol (C₂H₅OH) and gasoline, at different operating temperatures. The sphere-like GdFeO₃ nanostructure shows a significantly high resistance variation to NO compared with the other architectures, exhibits a high response (91%) when exposed to 100 ppm NO, and detects a level as low as 2 ppm (7%) at an optimum operating temperature of 140 °C. The GdFeO₃ nanostructure shows an excellent stability and repeatability after Download English Version:

https://daneshyari.com/en/article/7138920

Download Persian Version:

https://daneshyari.com/article/7138920

Daneshyari.com