Accepted Manuscript

Title: ppb-Level Heavy Metal Ion Detection by Electrochemistry-Assisted NanoPorous Silicon (ECA-NPS) Photonic Sensors

Authors: Wan-Ting Tsai, Minh-Hang Nguyen, Jian-Ren Lai, Hai-Binh Nguyen, Ming-Chang Lee, Fan-Gang Tseng

PII: S0925-4005(18)30257-0

DOI: https://doi.org/10.1016/j.snb.2018.01.232

Reference: SNB 24081

To appear in: Sensors and Actuators B

Received date: 2-11-2017 Revised date: 24-1-2018 Accepted date: 30-1-2018

Please cite this article as: Wan-Ting Tsai, Minh-Hang Nguyen, Jian-Ren Lai, Hai-Binh Nguyen, Ming-Chang Lee, Fan-Gang Tseng, ppb-Level Heavy Metal Ion Detection by Electrochemistry-Assisted NanoPorous Silicon (ECA-NPS) Photonic Sensors, Sensors and Actuators B: Chemical https://doi.org/10.1016/j.snb.2018.01.232

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

ppb-Level Heavy Metal Ion Detection by Electrochemistry-Assisted NanoPorous Silicon (ECA-NPS) Photonic Sensors

Wan-Ting Tsai^a, Minh-Hang Nguyen^b, Jian-Ren Lai^c, Hai-Binh Nguyen^d,

Ming-Chang Lee*a, and Fan-Gang Tseng*c,e

^aDepartment of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C.

^bCenter for Microelectronics and Information Technology, National Center for Technological Progress, Hanoi, Vietnam

^cDepartment of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C.

^dInstitute of Materials Science, Vietnam Academy for Science and Technology Hanoi, Vietnam

^eResearch Center for Applied Sciences, Academia Sinica Taipei 11529, Taiwan, R.O.C.

*Corresponding author: fangang@ess.nthu.edu.tw, mclee@ee.nthu.edu.tw

Highlights

- Nanoporous silicon (NPS) based 1D microcavity structures are fabricated simply by electrochemical etching, to enhance surface reactions, thus providing high sensitivity.
- The use of the NPS based 1D microcavity structures, in combination with long electrochemical reduction technique, provides a high selectivity and an ultra-low LOD for matters in water.
- This combined technique is applied to detect heavy metal ions (cadmium Cd²⁺ in our particular case) in DI and lake water. The result demonstrates a sensitivity of 342 nm/RIU, and LOD of 0.152 ppb in DI water and 1.16 ppb in lake water. The selectivity of Cd²⁺ is obtained over other metal ions available in the lake water such as sodium (Na⁺), potassium (K⁺), magnesium (Mg²⁺), calcium (Ca²⁺), nickel (Ni²⁺).

Abstract

Download English Version:

https://daneshyari.com/en/article/7139792

Download Persian Version:

https://daneshyari.com/article/7139792

<u>Daneshyari.com</u>