Accepted Manuscript

Title: C_3N monolayers as promising candidates for NO_2 sensors

Authors: Dongwei Ma, Jing Zhang, Xinxin Li, Chaozheng He, Zhiwen Lu, Zhansheng Lu, Zongxian Yang, Yuanxu Wang

PII:	S0925-4005(18)30657-9
DOI:	https://doi.org/10.1016/j.snb.2018.03.159
Reference:	SNB 24444
To appear in:	Sensors and Actuators B
Received date:	9-10-2017
Revised date:	2-3-2018
Accepted date:	26-3-2018

Please cite this article as: Dongwei Ma, Jing Zhang, Xinxin Li, Chaozheng He, Zhiwen Lu, Zhansheng Lu, Zongxian Yang, Yuanxu Wang, C3N monolayers as promising candidates for NO2 sensors, Sensors and Actuators B: Chemical https://doi.org/10.1016/j.snb.2018.03.159

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

C₃N monolayers as promising candidates for NO₂ sensors

Dongwei Ma^{1,*}, Jing Zhang¹, Xinxin Li¹, Chaozheng He^{2,*}, Zhiwen Lu², Zhansheng Lu³, Zongxian Yang³, and Yuanxu Wang^{1,4,*}

¹School of Physics, Anyang Normal University, Anyang 455000, China
²Physics and Electronic Engineering College, Nanyang Normal University, Nanyang 473061, China
³College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China
⁴Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China

*Corresponding author. E-mail: dwmachina@126.com (Dongwei Ma). *Corresponding author. E-mail: hecz2013@nynu.edu.cn (Chaozheng He). *Corresponding author. E-mail: wangyx@henu.edu.cn (Yuanxu Wang).

Graphical abstract

gases on the pristine and the B-doped C₃N monolayers has been studied.

Highlights

- 1, The adsorption of NO₂ and its various interfering gases on the C₃N monolayer has been theoretically studied.
- 2, The pristine C₃N monolayer is predicted to be a good room-temperature NO₂ sensor.
- 3, The doping of B atoms into the C₃N lattice is highly thermodynamically favorable.
- 4, The doped B should can further enhance the sensing selectivity and sensitivity of the C₃N monolayer toward NO₂.

Download English Version:

https://daneshyari.com/en/article/7140003

Download Persian Version:

https://daneshyari.com/article/7140003

Daneshyari.com