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Abstract: This paper presents an optimal control based charging strategy for plug-in hybrid
electric vehicles (PHEVSs) and battery electric vehicles (BEVs). This work proposes a method to
minimize battery capacity degradation incurred during charging by optimizing current profile.
A semi-empirical battery aging model is adopted to quantify the capacity loss; a generic
control-oriented vehicle cabin thermal model is developed to describe the battery surroundings
taking into account solar radiation. Optimal control solution offered by Pontryagin’s Minimum
Principle (PMP) is presented. Simulation-based results show that the benefit of this strategy
in terms of decreasing battery aging is significant, when compared with the existing strategies,
such as the widely accepted constant current constant voltage (CC-CV) protocol.
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1. INTRODUCTION

As PHEVs and BEVs are commercialized, interest has
grown in reducing the overall cost of ownership. A battery
pack, which represents a major component of vehicle cost,
draws a lot of attention from both automotive industry
and academia. Finding the minimum battery size that
meets vehicle energy and power output requirements is an
essential way to reduce vehicle cost significantly. Unfor-
tunately, a lithium-ion battery pack, which is usually the
second energy storage system in a PHEV or the primary
energy storage system in a BEV, will experience degra-
dation in both energy capacity and internal resistance
due to some irreversible electrochemical processes. The
temperature and current rate at which a battery is charged
and the state of charge (SOC) profile as a function of time
have critical effects on battery life. Therefore, an intelligent
or aging-aware charging strategy capable of estimating and
minimizing related aging effects can potentially extend
battery life, maintain vehicle performance, and reduce
cost.

The literature has examined xEV charging patterns from
a number of different perspectives. Among all charging al-
gorithms, the constant current constant voltage strategy is
well developed and widely adopted because of its simplicity
and easy implementation (Shen et al., 2012). The charging
time with CC-CV is dependent on the charging current
in the CC mode. In general, the lower the charging rate,
the higher the charging efficiency and longer charging time
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and the battery life. The pulse charger has been claimed to
be a fast and efficient charging algorithm for lithium-ion
batteries, because pulse charging strategy is designed to
establish the link between charging current profile and the
chemical reaction process so that electrochemical reactions
neither produce heat nor cause the accumulation of pres-
sure inside the battery (Li et al., 2001). Significant research
has been conducted on optimal PHEV charging and power
management. In Bashash et al. (2011), the authors present
a charging strategy for PHEVs that takes into account
the combined effects of total energy cost, battery health,
electricity pricing, and PHEV driving patterns. In Patil
et al. (2013), the authors study the tradeoffs and syner-
gies between optimal charging and power management in
minimizing the overall CO, emissions.

Instead of trading off multiple objectives, the focus of
this work is to develop a control strategy to minimize
battery capacity degradation during charging for any given
time window taking into account the environmental con-
ditions. Combining the battery aging model and the bat-
tery thermal model, an optimal charging current profile is
determined by solving an optimal control problem. This
paper is organized in the following way: in section 2, all
the models are described including battery electric model,
battery heat generation model, battery aging model as well
as the vehicle cabin and battery thermal model. In section
3, optimal control problem formulation is presented. In
section 4, the optimal solutions from PMP are studied;
simulation results for various charging scenarios are ana-
lyzed; and comparisons between optimal charging and CC-
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CV protocol are conducted. Conclusions are made in the
last section.

2. MODELS
2.1 Battery electric model
The battery is represented by an equivalent circuit com-
prising a voltage source, Fy, and its internal resistance, Ry,

in series. Thus the battery cell current is given by Serrao
et al. (2011):

Ey—/E2 =4 Ry Peey (1)
2-Ro
in which P, is the cell power. Assuming that all the cells

are equivalent, battery SOC is computed from the battery
cell current as

Icell =

(2)

in which C,.j; is the cell capacity.

2.2 Battery aging model

Aging models for lithium-ion batteries can be classified
into two categories, namely, physical-chemical models and
empirical models. Physical-chemical models are usually
developed to study or describe a single aging mechanism
inside the cell (Marcicki et al., 2011, 2012). For instance, a
first-principles capacity fade model is developed based on
the mechanism for solid electrolyte interface (SEI) growth
(Ramadass et al., 2004). This type of models are helpful
in understanding of aging under different modes as well as
the effect of an aging source on different aspects of the cell
performance. Such first-principles models have limitations
such as the requirement of a detailed model of the aging
processes and often require long computation time. To
remedy these shortcomings, various empirical and semi-
empirical models have been proposed (Bloom et al., 2001;
Cordoba-Arenas et al., 2015). These models are developed
by considering simplified physical relations in the model by
fitting the parameters of the model with experimental data
obtained from aging tests, resulting in a set of equations
that describe the main degradation mechanisms. Due to
the favorable compromise between simplicity and accu-
racy, semi-empirical models are employed in the control-
oriented models used in this study. We start from a generic
model initially proposed in Wang et al. (2011), which has
the form

E
Qloss =B emp( .

) (An)” (3)

where Q.55 is the battery capacity loss in percentage with
respect to the nominal capacity, B is a pre-exponential
factor, E, is the activation energy in J-mol~! , R is the
gas constant, Oy, is the battery temperature expressed in
Kelvin, Ah is the Ah-throughput, and z is the power law
factor.The generic aging model is calibrated on battery
aging data obtained from vehicles in operation, and the
data is reported in Table 1 where profile A and B are
from Groot (2012) and profile C is from Spagnol et al.
(2010). The three profiles are specified in terms of average

Table 1. Battery aging experimental data

DATA | SOC%] | I[1/h] | Bpare]°C]
Profile A 38.5 2.8 36
Profile B 42.0 3.0 38
Profile C 68.0 6.0 45
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Fig. 1. Curve fitting result of identified aging model with
the experimental data Suri G. (2015)

state of charge, SOC, average C-rate, I. and average
battery temperature, Op4::. Following a two-step curve
fitting procedure, the result is shown in Fig.1. and the
identified aging model has the form:

—31700 +-163.3 - I,

Qloss.% = (Oé . SOC+ﬂ) . el‘p( ) . Ah0.57
R- ebatt
(4)
[ 1287.6, SOC <0.45
*=11385.5, SOC > 0.45
g [63563, SOC <045
=1 4193.2, SOC > 0.45

2.8 Battery heat generation model

Based on the assumption that each cell inside the pack is
equivalent, the rate of heat generation in the battery pack
is described by the following equation:

Qvatt = Ro - 12, - Ny - N, (5)

where Qbatt is the rate of heat generation inside the battery
pack, and N, and NN, are the number of cells in series and
the number of cells in parallel respectively.

2.4 Vehicle cabin and battery thermal model

When a vehicle is parked under a clear sky, the thermal
load due to solar radiation may be greater than the load
due to conduction between the surroundings and the ve-
hicle cabin especially in summer, which makes the battery
experience higher temperature than the ambient temper-
ature. Cabin thermal models have been developed us-
ing numerical methods and lumped-parameter approaches
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