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In this paper, we evaluate the fuel savings of a plug-in hybrid electric vehicle (PHEV) that uses an optimal 

controller, itself based on the Pontryagin Minimum Principle (PMP). A process was developed to 

synthesize speed profiles through a combination of Markov chains and information from a digital map 

about the future route. In a potential real-world scenario, the future trip (speed, grade, stops, etc.) can be 

estimated, but not deterministically known. The stochastic trip pred iction process models such uncertainty. 

A PMP strategy was implemented in a Simulink controller for a model of Prius -like PHEV and compared 

to a baseline strategy using Autonomie, an automotive modeling environment. Multiple real-world  

itineraries were defined in urban areas with various environments, and for each of them multiple speed 

profiles were synthesized so as to provide a statistically representative dataset, and finally fuel savings were 

evaluated with the optimal control. 

Keywords: hybrid vehicle, energy management, optimization. 

 

1 INTRODUCTION 

Hybrid electric vehicles (HEV) and their plug-in version 

(PHEV) combine two sources of power, providing freedom in 

control, and thus presenting opportunities for optimization . 

The intuitive control logic for HEVs is to use the engine at 

high power demands (accelerations, high speed driving). For 

PHEVs, conventional strategies aim at using the grid 

electricity stored in the battery first, and then switch to a 

charge-sustaining (CS) HEV control. Optimal control theory 

can however provide the means to achieve the lowest fuel 

consumption in a more systematic way.  

Numerous studies on optimal control applied to electrified  

vehicles showed that significant fuel savings can be achieved 

with knowledge of future speed. Dynamic programming (DP) 

using the Bellman principle is one such method, and in the 

context of a PHEV, it shows that a blended charge-depleting 

strategy is optimal for longer trips (Karbowski et al., 2006). 

Stochastic dynamic programming (Moura et al., 2011) is 

similar, but uses a probabilistic distribution of drive cycles, 

rather than a single cycle. Another technique is mixed-integer 

linear programming (Wu et al., 2014).  

In this study, we use the Pontryagin’s Minimization Principle 

(PMP) (Kim et al., 2011; Shen et al., 2015), which under 

certain assumptions can be simplified to an Equivalent 

Consumption Minimization Strategy (ECMS) method 

(Musardo et al., 2005; Paganelli et al., 2002; Serrao et al., 

2009), and which is generally more compatible with real-

world implementation. PMP too relies on the future trip 

prediction through a constant called co-state or equivalence 

factor (EQF). 

One key challenge for implementing optimal controllers is the 

full knowledge of the future speed, given the non-

deterministic nature of driving. However it is conceivable that 

some information about the future is available thanks to global 

navigation satellite systems (GNSS) and digital maps. The 

destination and route can be known, either through driver’s 

direct input or through statistical learning (Froehlich and 

Krumm, 2008). However, the information typically available, 

such as average speeds on road segments is too coarse for 

properly estimating energy consumption and therefore 

minimizing it. 

In this paper, we present a method that combine Markov 

chains (Ivanco et al., 2009; Lee and Filipi, 2010) and digital 

map information, which allows to generate a set of speed 

profiles for the trip ahead. These speed profiles can provide a 

horizon for a PMP controller, implemented for a forward-

looking model, Autonomie (Argonne National Laboratory), of 

a Toyota Prius PHEV, and can also be used to evaluate the 

effectiveness of the PMP controller. 
 

2 SPEED PROFILE GENERATION 

2.1 Vehicle trip profile 

We define a vehicle trip profile (VTP) as a set of attributes 

describing a trip made on the road. These attributes may  

include the route, grade, road class, speed, etc. In the present 

study, we consider two kinds of VTP: 

 Macroscopic VTP (M-VTP): contains macroscopic 

attributes for each subsection of the trip, including 

road category, speed limit, traffic signs, etc. 

 Microscopic VTP (μ-VTP): time-series for the entire 

trip with a frequency of 1 Hz or less, including 

vehicle speed and grade. 

M-VTPs can be obtained from a digital map. In our case, we 

use HERE’s digital maps, by defining an origin and a 

destination in a geographical interface. While the M-VTPs  

thus created contain very useful attributes, their spatial 

resolution (hundreds to a few thousands of meters) is not 

compatible with a high-fidelity vehicle energy model, such as 

Autonomie. One notable exception is the grade, which can be 

used as-is because of its higher resolution. M-VTPs can be 
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obtained in a modern car equipped with a digital map, and 

with the knowledge of current position and trip destination. 

 

2.2 Markov Chain Generation under Constraints 

In a M-VTP generated from HERE’s data, the trip is divided 

in segments of a few hundred meters up to a few kilometers , 

and for each segment, the average speed and the speed limit 

can be known, as well as whether the segment ends with a 

stop. One possible way of “augmenting” the data with 

naturalistic speed changes occurring in the real-world is to use 

Markov chains. We use 𝑋𝑋 = (𝑣𝑣, 𝑎𝑎) as the state of the process, 

similarly to previous research (Ivanco et al., 2009; Lee and 

Filipi, 2010). The transition from one state to another is 

governed by a transition probability that is not time-

dependent, and the collection of these probabilities forms the 

transition probability matrix (TPM) 𝑀𝑀: 

 

∀𝑘𝑘 ∈ [1, 𝑇𝑇],   𝑃𝑃(𝑋𝑋(𝑘𝑘 + 1) = 𝑋𝑋𝑖𝑖 |𝑋𝑋(𝑘𝑘) = 𝑋𝑋𝑗𝑗 ) = 𝑀𝑀𝑖𝑖,𝑗𝑗  (1)  

 

where 𝑋𝑋𝑖𝑖 = (𝑣𝑣𝑛𝑛, 𝑎𝑎𝑚𝑚 ) and 𝑋𝑋𝑗𝑗 = (𝑣𝑣𝑝𝑝 , 𝑎𝑎𝑞𝑞 ), and 𝑘𝑘 is the 

discretized time. 

Given that speed and acceleration are related, using both 

together as a state makes the process equivalent to a 2nd order 

Markov chain, i.e. where the transition probability at any 

given time depends on the states at the previous two time 

steps. 

We build the TPM by processing all the data points of a real-

world trip database. In our case, we used data from the 2007 

Chicago Metropolitan Agency for Planning (CMAP) travel 

survey. Approximately 6,000,000 data points were filtered,  

processed, and quality-checked. 

One fundamental aspect of the “classic” Markov chain is that 

the outcome is stochastic, and the only control over the result 

is the time at which we stop the Markov chain generation. We 

designed a “constrained” Markov chain algorithm (Fig. 1) that 

generates a naturalistic speed profile for a segment defined by 

its distance, speed limit, target average speed and initial speed. 

The algorithm consists, for a given segment, in generating 

stochastic speed profiles until a result with characteristics 

“close” enough to the deterministic prediction emerges. The 

Markov chain generation is stopped when the current distance 

is higher than, or close to the target distance. Once the 

candidate stochastic speed profile is generated, we check 

whether it satisfies a stopping criterion, so that the average 

speed and distance match the ones of the target, and so that the 

speed limit constraint is satisfied. If the stopping criterion is 

not met, the algorithm starts a new Markov generation, and 

the process continues until a speed profile that meets the 

stopping criterion is found.  

 

 
 

Fig. 1. Flowchart sumarizing the “constrained” Markov chain algorithm  

 

Fig. 2 shows an example of output from the algorithm for one 

example segment. Three vehicle speed traces were generated 

for the same short target segment: the resulting average speeds 

are close to the target speed of 31 km/h, and do not exceed the 

50 km/h speed limit. Because of the stochastic nature of the 

method, no two synthesized speed traces are the same. 

 

Fig. 2. Three vehicle speed profiles synthesized by a Markov Chain under 

the same constraints 

This process can be repeated for each segment of a M-VTP, 

with the final speed of one segment being the initial speed of 

the following one, so as to ensure continuity of the speed 

signal. An example is shown in Fig. 3. A μ-VTP, usable in a 

high-fidelity vehicle model, is thus created from a M-VTP 

coming from the digital map. By generating multiple μ-VTPs  

for the same M-VTP, it is possible to have a set of μ-VTPs  

statistically representative of the same future M-VTP. 
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