Accepted Manuscript

Title: Optimization ethanol detection performance manifested by gas sensor based on In₂O₃/ZnS rough microspheres

Authors: Q. Chen, S.Y. Ma, X.L. Xu, H.Y. Jiao, G.H. Zhang, L.W. Liu, P.Y. Wang, D.J. Gengzang, H.H. Yao

PII: S0925-4005(18)30460-X

DOI: https://doi.org/10.1016/j.snb.2018.02.172

Reference: SNB 24267

To appear in: Sensors and Actuators B

Received date: 3-10-2017 Revised date: 3-2-2018 Accepted date: 25-2-2018

Please cite this article as: Q.Chen, S.Y.Ma, X.L.Xu, H.Y.Jiao, G.H.Zhang, L.W.Liu, P.Y.Wang, D.J.Gengzang, H.H.Yao, Optimization ethanol detection performance manifested by gas sensor based on In2O3/ZnS rough microspheres, Sensors and Actuators B: Chemical https://doi.org/10.1016/j.snb.2018.02.172

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Optimization ethanol detection performance manifested by gas sensor based on In₂O₃/ZnS rough

microspheres

Q. Chen^{a,b}, S.Y. Ma^{a,*}, X.L. Xu^a, H.Y. Jiao^b, G.H. Zhang^b, L.W. Liu^b, P. Y. Wang^b, D.J. Gengzang^b,

H.H. Yao^a

^a Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College

of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, PR China

^b College of Electric Engineering, Key Laboratory for Electronic Materials of the State Ethnic Affairs

Commission of PRC, Northwest Minzu University, Lanzhou, Gansu, 730030, PR China

* Corresponding author. Tel.: +86 13893422608, fax: +86 9317971503.

E-mail address: chenqiong0923@163.com

Highlights

Heterostructure In₂O₃/ZnS composites microspheres are synthesized by two-step hydrothermal

process.

The sensor based on In₂O₃/ZnS composites microspheres presents superior sensing

performance to 100 ppm ethanol at 260°C, and possess fast response and recovery time (21

and 34 s).

The modulation of the potential barrier height in the In₂O₃/ZnS heterostructure are the main

reasons for the enhanced sensing performance

Abstract

For traditional resistance-type gas sensor, introducing heterostructures was an effective way to

enhance the sensing performance. In this work, heterostructure In₂O₃/ZnS composites material with

rough spherical morphology was synthesized by two-step hydrothermal process in which pure ZnS

microspheres acted as substrate for the coating of In₂O₃ nanoparticles. The obtained products were

1

Download English Version:

https://daneshyari.com/en/article/7140275

Download Persian Version:

https://daneshyari.com/article/7140275

<u>Daneshyari.com</u>