Accepted Manuscript

Title: Smart Hydrogel-based Optical Fiber SPR Sensor for pH

Measurements

Authors: Yong Zhao, Ming Lei, Shi-Xuan Liu, Qiang Zhao

PII: S0925-4005(18)30126-6

DOI: https://doi.org/10.1016/j.snb.2018.01.120

Reference: SNB 23969

To appear in: Sensors and Actuators B

Received date: 3-6-2017 Revised date: 28-12-2017 Accepted date: 12-1-2018

Please cite this article as: Yong Zhao, Ming Lei, Shi-Xuan Liu, Qiang Zhao, Smart Hydrogel-based Optical Fiber SPR Sensor for pH Measurements, Sensors and Actuators B: Chemical https://doi.org/10.1016/j.snb.2018.01.120

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Smart Hydrogel-based Optical Fiber SPR Sensor for pH

Measurements

Yong Zhao¹, Ming Lei¹, Shi-Xuan Liu², Qiang Zhao²

(¹Northeastern University, College of Information Science and Engineering, Shenyang,

110819, China

²Shandong Provincial Key Laboratory of Ocean Enviromental Monitoring Technology

, Institute of Oceanographic Instrumention, Shandong Academy of Sciences, Qingdao

266001, China)

Corresponding Author: zhaoyong@ise.neu.edu.cn

Highlights

A hydrogel-coated optical fiber SPR sensor based on MMF-SMF-MMF structure has been

fabricated for pH measurements.

The experimental sensor is able to indicate pH variations in a wide range of 1 to 12.

The maximum pH sensitivity of the proposed sensor has reached 13 nm/pH at higher pH

region (8~10 pH).

Abstract: A hydrogel-coated optical fiber surface plasmon resonance (SPR) sensor based on

MMF-SMF-MMF structure has been fabricated for pH measurements. When the solutions with

difference pH values contacting the sensing probe, the amount of the dissociated carboxylic ions

in the hydrogel will change according to the pH value of the solution. This process will modify the

volume and refractive index of the hydrogel, which results in a shift of the SPR wavelength. The

experimental sensor is able to indicate pH variations in a wide pH range from 1 to 12, and the

maximum pH sensitivity of the proposed sensor can reach 13 nm/pH at higher pH region (8~10

pH). The influence of temperature (in the range of 20°C~40°C) on SPR wavelength is found to be

weak. Further, the sensor possesses remarkable repeatability and excellent stability. Due to the

wide measuring range and simple fabrication process, the sensor is promising to be used for the

Download English Version:

https://daneshyari.com/en/article/7140523

Download Persian Version:

https://daneshyari.com/article/7140523

<u>Daneshyari.com</u>