Contents lists available at ScienceDirect

Sensors and Actuators B: Chemical

journal homepage: www.elsevier.com/locate/snb

Ultra-low NO₂ detection by gamma WO₃ synthesized by Reactive Spray Deposition Technology

Rishabh Jain a,c,d,*, Yu Leib, Radenka Marica,b,c

- a Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, CT 06269, USA
- b Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road, Unit 3222, Storrs, CT 06269, USA
- ^c Center for Clean Energy Engineering, University of Connecticut, 44 Weaver Road, Unit 5233, Storrs, CT 06269, USA
- ^d Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, CT 06269, USA

ARTICLE INFO

Article history: Received 28 October 2015 Received in revised form 24 May 2016 Accepted 25 May 2016 Available online 27 May 2016

Keywords:
Gas sensor
Combustion
NO₂ sensing
Flame spray pyrolysis
Tungsten oxide nanoparticles
Reactive Spray Deposition Technology

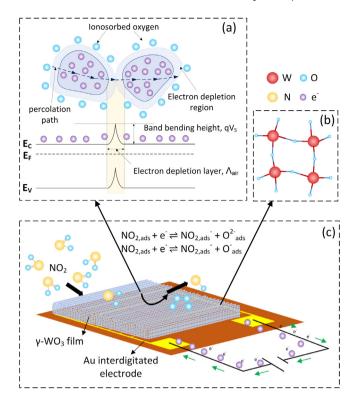
ABSTRACT

A porous tungsten oxide (WO₃) NO₂ sensor was developed by a one-step flame based process called Reactive Spray Deposition Technology (RSDT). This nano-crystalline WO₃ film was deposited directly on gold interdigitated electrodes. The sensing characteristics of this NO₂ sensor was measured at the parts per million (ppm) level, (0.17–5 ppm in air) at 300 °C. The sensors showed a relatively fast response time (\sim 7s) and recovery time (\sim 5 min), respectively. The stability of the sensor was evaluated for 300 h in 0.5 ppm NO₂ at 300 °C in (2000 response-recovery cycles). The sensor was stable up to 6 days (\sim 150 h) of continuous operation and degraded between 150–300 h. The morphology and surface properties of the WO₃ film were investigated with XRD, Raman spectroscopy, BET, SEM, TEM, and HRTEM.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

 $NO_x\ (NO_2,\ NO)$ is a toxic air pollutant which is produced as a byproduct of gasoline combustion in an internal combustion engine [1]. Exposure to unsafe levels of $NO_2\ (>10\ ppm)$ causes irritation in eyes, nose and throat, while higher exposure $(>25\ ppm)$ can cause severe reactions for people with underlying pulmonary diseases like Chronic Obstructive Pulmonary Disease (COPD) or asthma. NO_2 reacts with water droplets in the trachea and lungs and forms droplets of nitric acid. These tiny droplets of nitric acid penetrate deeply into the lungs and causes various respiratory diseases. NO_2 exposure has also being associated with Sudden Infant Death


Abbreviations: RSDT, Reactive Spray Deposition Technology; COPD, Chronic Obstructive Pulmonary Disease; SIDS, Sudden Infant Death Syndrome; OSHA, Occupational Safety and Health Administration; DOAS, differential optical absorption spectroscopy; CRDS, cavity ring down spectroscopy; REMPI, resonance enhanced multi photon ionization; YSZ, yttria stabilized zirconia; NASICON, natrium superionic conductor; PECVD, plasma-enhance chemical vapor deposition; PEL, permissible exposure limit; THF, tetrahydrofuran; ICDD, International Centre for Diffraction Data.

E-mail addresses: rishabh.jain@uconn.edu, rishabh.rjain@gmail.com (R. Jain).

Syndrome (SIDS) [2]. A detailed report of the actual accidental release of NO₂ and its subsequent health effect on the population is provided by Bauer et al. [3]. The United States Occupational Safety and Health Administration (OSHA) has set a 5 ppm workplace permissible exposure limit for NO₂, time averaged over an 8 h work shift. NO₂ also leads to the formation of ozone which is hazardous to both aquatic and terrestrial ecosystems. Current methods of quantification of NO₂ in the air includes gas chromatography equipped with mass spectroscopy (GC-MS) [4], chemiluminescence [5], differential optical absorption spectroscopy (DOAS) [6], laser induced fluorescence (LIF) [7], cavity ring down spectroscopy (CRDS) [8] and resonance enhanced multi photon ionization (REMPI) [9]. However, these analyses can be very expensive, requiring trained experts, and having complex, bulky and non-portable instrumentation. Metal-oxide semiconductor based gas sensors could be an effective solution to the underlying limitations faced by currently used methods for measuring NO₂. Metal oxide materials, such as yttria stabilized zirconia (YSZ) [10], natrium superionic conductor (NASICON) [11], In₂O₃ [12], and WO₃ [13], have been used for NO₂ gas sensing. Among metal oxides, WO₃ is considered to be a good candidate for low concentration NO₂ sensing.

WO₃ is an *n*-type semiconductor with a band gap of 2.75 eV which is known to exist in multiple polymorphs such as tetragonal (α) [14], orthorhombic (β) [15], monoclinic (ε and γ) [16], and triclinic (δ) [17]. Each of these forms exhibits different electrical,

^{*} Corresponding author at: University of Connecticut, Department of Materials Science and Engineering and Center for Clean Energy Engineering, 44 Weaver Road, Storrs. CT 06269-5233. USA.

Fig. 1. Simplified model explaining the NO_2 sensing phenomenon by monoclinic γ -WO₃. (a) Band bending after ionosorption of oxygen. E_C , E_F and E_V denotes the energy of conduction band, Fermi level and valence band respectively. qV_S and $2\Lambda_{gas}$ denotes the band bending height and thickness respectively. (b) Structure of γ -WO₃. (c) γ -WO₃ thin film deposited on a gold interdigitated electrode.

optical and magnetic behaviors which are favorable for particular applications. Gas sensing property of WO₃ was discovered for the first time by Shaver, in 1967 when he observed a change in conductivity of WO₃ thin film in presence of low concentration of H₂. Since then *n*-type WO₃ has been extensively used for sensing H₂ [18], H₂S [19], NO_X [13,20], NH₃ [21], O₃ [22], CO [23], and acetone [24,25].

The essential components of a gas sensing device are: a metaloxide sensing layer deposited on gold or platinum interdigitated electrodes which are attached to, an alumina or silicon substrate with a heater and a temperature probe to increase and control the temperature of the sensing layer. WO₃ film deposited interdigitated electrodes possesses both receptor and transducer functions, where the reaction of the NO₂ species takes place on the WO₃ film (receptor function) and the adsorbed NO₂ changes the resistance (transducer function) of the sensing film. This change in resistance can be correlated with the concentration of NO₂. The response (S) for NO₂ is calculated as the ratio of the resistance of the WO₃ film on gold interdigitated electrodes at different gas concentration and is given by the following equation [26]:

$$S = \frac{R_g}{R_a}$$

where, R_g is the resistance of the film in presence of NO_2 and R_a is the resistance of the film in air. Metal-oxide gas sensors based on this principle are one of the most studied gas sensor types because of its low cost of production, miniature size, low power consumption, and large number of applications [27].

The detailed mechanism of a *n*-type semiconductor thin film sensor is explained by Franke et al. [28] which can be used as a model to define the interaction between *n*-type WO₃ and NO₂. Fig. 1 depicts the mechanism. At elevated temperature, oxygen from the air is adsorbed on the WO₃ surface. Since a constant voltage is

applied externally on the WO_3 film, the electrons are exchanged from the conduction band of WO_3 to the adsorbed oxygen causing them to convert to ionosorbed species. NO_2 is a strong oxidizer, because of the presence of an unpaired electron in its outermost shell, which supports the formation of ionosorbed oxygen [20] according to the following equations:

$$NO_2 + e^- = NO^+ + O^{2-}_{ads}(below 150 \,^{\circ}C),$$

$$NO_2 + e^- = NO^+ + O^-_{ads}(150-500 \,^{\circ}C)[29].$$

This causes the formation of an electron depletion region around the individual WO $_3$ particle, also known as space-charge layer, Λ_{gas} [30]. At the junction of two particles a larger electron depletion layer ($2*\Lambda_{gas}$) is formed causing conduction band bending of WO $_3$ and the generation of a surface potential barrier (height of band bending qV $_5$). Since the electronic conduction occurs along a percolation path via particle to particle contact, presence of the large electron depletion region hampers the electron path causing an increase in overall WO $_3$ film resistance.

The gas sensing property of WO₃ films strongly depends on the preparation method and the growing conditions of the film itself. Many synthesis procedures have been proposed for producing the WO₃ films for NO and NO₂ sensors. These include spray pyrolysis [31], drop coating [32], co-precipitation [33], sol-gel synthesis [20], plasma-enhance chemical vapor deposition (PECVD) [34], thermal evaporation [13,35], and glancing angle DC magnetron sputtering [36]. In order to have a high productivity, low resistance, and a low power consumption sensor, the current trend is to construct all sensing elements on a chip [37].

Here we have proposed an open atmosphere flame based process also known as Reactive Spray Deposition Technology (RSDT) for the synthesis of γ-WO₃ films directly on gold interdigitated electrodes. The RSDT process allows the flexibility to create y-WO₃ with control of the particle size, porosity and thickness of the film. The sensitivity of porous WO₃ increases when the particle size is below its Debye length (λ_D) which is 25 nm [38]. RSDT is a subset of flame spray pyrolysis which was developed by Maric et al. [39] for the synthesis of nanoparticles. This process can employ a broad selection of precursors [40-46] compared to conventional vapor-fed flame reactors. In RSDT, nanoparticles are generated in the flame, and then are either directly deposited on the substrate as a film or collected as a nanopowder. This eliminates the intermediate steps of filtration, drying, and calcination. By incorporating a secondary spray system, nanoparticles can also be deposited on various supports such as carbon [47], magneli phase titania [48] and ceria [41,42]. RSDT provides complete control of the nanoparticle size, crystallinity [49], porosity, film thickness, and support concentration [47]. Ability to control the substrate temperature from 20 to 1000 °C enables the use of a wide array of substrates [39]. We have successfully used RSDT for the synthesis of various nanomaterials [41,43,46,48-51]. In our previous work, it had been shown that RSDT can be employed for the synthesis of WO₃ films with precise control of particle size, film morphology, and crystal structure [40]. In this study, we have employed RSDT for the deposition of nano crystalline WO₃ thin films directly on a gold interdigitated electrode which is to be assembled into an NO₂ sensing device. Here we provide a brief description of the synthesis, fabrication and testing procedure of the NO₂ sensor. The microstructure of the tungsten oxide films, and the effect of the film structure, grain size, and the sensor response to the ppm level concentration of NO2 will be described. NO₂ response behavior on the tungsten oxide surface at various operating temperatures will also be presented.

The properties of the WO₃ film was investigated by X-ray diffraction (XRD), Raman spectroscopy, the Brunauer-Emmett-Teller (BET) method, high resolution transmission electron

Download English Version:

https://daneshyari.com/en/article/7142828

Download Persian Version:

https://daneshyari.com/article/7142828

<u>Daneshyari.com</u>