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Abstract: In this paper, we examine and discuss the role of dissipativity in economic model
predictive control. We review some recent results relating dissipativity with the concept of
optimal steady-state operation, and we show that strict dissipativity is necessary and sufficient
for a slightly stronger property than optimal steady-state operation. We discuss the importance
of this result for giving closed-loop performance guarantees in economic MPC. Furthermore, we
present extensions for the case of optimal periodic operation.
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1. INTRODUCTION

Economic model predictive control (MPC) is a variant of
MPC where, in contrast to standard tracking MPC, the
control objective is not necessarily the stabilization of an
a priori given setpoint (or trajectory), but the optimization
of some general performance criterion, possibly related to
the economics of the considered system. In recent years,
different economic MPC schemes have been proposed
and studied in the literature, using different assumptions
and/or additional terminal constraints or cost terms, see,
e.g., (Angeli et al., 2012; Amrit et al., 2011; Heidarinejad
et al., 2012; Miiller et al., 2013b; Griine, 2013; Ferramosca
et al., 2014) and the recent survey article by Ellis et al.
(2014).

Due to the use of a general performance criterion, the
optimal operating regime for the considered system might
not be stationary, but can be some periodic orbit or even
more complex. Hence an interesting question is to classify
what the optimal operating regime is for a given system
and a given cost function. Furthermore, it is desirable
to guarantee that the closed-loop system, resulting from
application of an economic MPC scheme, “finds” the op-
timal operating behavior, i.e., converges to the optimal
trajectory. To this end, a certain dissipativity condition
has turned out to play a crucial role. Namely, dissipativity
with respect to a supply rate involving the employed stage
cost function is both necessary and sufficient such that
the optimal operating regime is stationary, i.e., at some
steady-state (Angeli et al., 2012; Miiller et al., 2013a, 2015;
Faulwasser et al., 2014). Furthermore, the same dissipa-
tivity property (strengthened to strict dissipativity) can
be used to conclude that the optimal steady-state is an
asymptotically stable equilibrium point for the resulting
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closed-loop system, see, e.g., Angeli et al. (2012); Amrit
et al. (2011); Griine (2013); Zanon et al. (2014). For the
case where periodic operation is optimal, some first gen-
eralizations of these results have recently been studied by
Griine and Zanon (2014) and Miiller and Griine (2015a,b).

The contribution of this paper is to provide a compre-
hensive treatment of the role played by dissipativity in
the context of economic MPC. To this end, we first re-
view some of the results mentioned above concerning the
relation between dissipativity and optimal steady-state
operation. After that, we show that strict dissipativity is
both necessary and sufficient for a slightly stronger prop-
erty than optimal steady-state operation (see Section 3).
The implications and importance of this result, also for
establishing desired convergence properties for the closed-
loop system, are then discussed in Section 4. Section 5 pro-
vides extensions of the previous results to the case where
periodic operation in contrast to steady-state operation is
optimal.

2. PRELIMINARIES AND SETUP

Denote by I the set of integer numbers, by I, ) the set of
integers in the interval [a,b] C R, and by I, (I<,) the set
of integers greater (less) than or equal to a. We consider
discrete-time nonlinear systems of the form

o(t+1) = f(z(t), u(t)), z(0) = o, (1)
where f: XxU — R"”, () € X CR" and u(t) € U CR™
are the system state and the control input, respectively,
at time t € I, and xyp € X is the initial condition.
The system is subject to pointwise-in-time state and input
constraints

(z(t),u(t) eZCXxU (2)
for all t € I>p. For a given control sequence u =
(w(0),...,u(K)) € UKH! (or u = (u(0),...) € U>®), de-
note by x, (¢, z¢) the corresponding solution of system (1)
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with initial condition x,,(0, zg) = z¢. For a given z € X by
UY (z) we denote the set of all feasible control sequences
of length N, i.e., UN(z) := {u € UN : (zu(k,2),u(k)) €
7. Yk € ljg, y—1y}. Similarly, the set of all feasible control
sequences of infinite length is denoted by U>(x). Define
the set Z° as the largest ”forward invariant” set contained
in Z, i.e., the set which contains all elements in Z which
are part of a feasible state/input sequence pair:

70 = {(z,u) € Z: I € U®(z) s.t. v(0) =u} CZ. (3)

Denote by X° the projection of Z° on X, i.e., X? := {x €
X:U>(x) # 0}.

System (1) is equipped with a stage cost function ¢ :
X x U — R specifying the performance criterion to be
minimized. In the context of economic MPC, ¢ can be
some general function, and need not be positive definite
with respect to a setpoint (or more general, set) to be
stabilized as in standard tracking MPC. In economic MPC,
the control input to system (1) is now computed at each
time instant ¢ € I>¢ with current system state x = z(¢)
by minimizing, with respect to u € UM (), the following
finite-horizon cost function:

N—-1

In(a,u) = 3 Uaa(t,2),ult) (4)

t=0
Then, the first element of the optimal input sequence
uy , 1s applied to system (1) and the procedure is repeated
again at time t + 1. As discussed in the introduction,
an additional terminal cost term and/or suitable terminal
constraints are added to the above optimization problem in
various economic MPC schemes available in the literature.

1

Let S be defined as the set of all feasible state/input
equilibrium pairs of system (1), i.e.,

S = {(x,u)GZ:x:f(x,u)}, (5)
which is assumed to be non-empty. In the following, we
assume that a (possibly non-unique) optimal state/input
equilibrium pair (x*,u*) exists, i.e., (x*, u*) satisfies

", u*) = inf {(z,u). (6)
(z,u)€S
For a given M € I, denote by Cys the set of states which
can be steered to x* in M steps in a feasible way, i.e.,

Xy o= {r € X: Ju e UM(2) s.t. z,(M,z) = 2*}.  (7)
Next, let Ry be the set of states which can be reached
from x* in M steps in a feasible way, i.e.,

Rar = {z € X:Ju e UM(z*) s.t. (M, 2%) = z}. (8)
Note that Cpy N Ras # 0, as by definition x* is contained
in both Cp; and Rjys. Now define the set Z,; as the set of
state/input pairs which are part of a feasible state/input
sequence pair staying in Cpy MRy, for all times:

Zyi=A(z,u) € Z: Fv € UP(z) s.t. v(0) = u,
.%'y(t7.%'> eCv NRum VteHZO}QZO. (9)

As already discussed in the introduction, in this paper
we study and discuss the role of dissipativity in economic
MPC. The concept of dissipativity dates back to Willems
(1972) (see also (Byrnes and Lin, 1994) for a discrete time
version) and is as follows.

! In the following, we assume that for all z € X°, a minimizing
control sequence u}; , € UN () exists, i.e., such that Jy (z, UN L) =

inf, cyn (o) In (@, 0).

Definition 1. The system (1) is dissipative on a set W C
Z with respect to the supply rate s : W — R if there exists
a storage function? X : Wx — Rs¢ such that the following

inequality is satisfied for all (z,u) € W:
Af (@) = A(z) < s(a, ).
If there exists p € Koo such that for all (z,u) € W
A(f (@) = Mz) < —pllz — 27]) + s(z,u),
then system (1) is strictly dissipative on W.

(10)
(11)

An equivalent characterization of dissipativity can be
obtained via the so-called available storage, defined as
T—1

sup Z —8(xy(t, ), u(t)).
T>0,uelU>(z) 1
Namely, it was shown by ? Willems (1972) that system (1)
is dissipative on Z° with respect to the supply rate s if
and only if S,(z) < oo for all x € X% Furthermore, in
an analogous fashion one can show that that system (1)
is dissipative on Z° with respect to the supply rate s and
with a storage function A which is bounded on X° if and
only if S, is bounded on X°, i.e., S,(z) < ¢ < oo for all
z € X% and some ¢ > 0.

Sala) = (12)

3. DISSIPATIVITY AND OPTIMAL STEADY-STATE
OPERATION

Given the system dynamics (1), the constraint set Z and
the cost function £, an interesting question is to determine
what the optimal operating regime looks like, i.e., what
system behavior results in an optimal performance. To
this end, the following definition of optimal steady-state
operation was considered in Angeli et al. (2012).

Definition 2. System (1) is optimally operated at steady-
state, if for each zo € X° and each u € U*(z) the following
holds for all ¢ € I>q:

T-1
hmlnf t=0 €<xu(t7x)au(t))

T—o0 T

> 0zt u). (1)

System (1) is suboptimally operated off steady-state, if in
addition for each 7o € X° and each u € U™ (z) at least
one of the following two conditions holds:

T-1
lim inf &=4=0 Hzult, z), u(t))
T—o00 T
liminf |a,, (¢, 2) — 2% =0
t—o0

> 0(x*,u’) (14a)

(14b)

The definition of optimal steady-state operation means
that no feasible solution can have an (asymptotic) average
performance which is better than the performance of the
best steady-state, while suboptimal operation off steady-
state means that each solution has an (asymptotic) average
performance which is strictly worse than the performance
of the best steady-state, or “passes by” the optimal steady-
state infinitely often. The following theorem from Angeli
et al. (2012) shows that a certain dissipativity property is
sufficient for optimal steady-state operation of system (1).

2 Here, Wx denotes the projection of W on X.

3 We note that while this was established by Willems (1972) for
continuous-time systems without constraints, the same result can
be obtained in an analogous fashion for our setting of discrete-time
systems with state and input constraints.



Download English Version:

https://daneshyari.com/en/article/714328

Download Persian Version:

https://daneshyari.com/article/714328

Daneshyari.com


https://daneshyari.com/en/article/714328
https://daneshyari.com/article/714328
https://daneshyari.com

