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Abstract: In this paper we present a nonlinear model predictive control strategy for dynamic
reconfiguration of electrical power distribution systems with distributed generation and storage.
Even though power distribution systems are physically built as interconnected meshed networks,
as a rule, they operate in a radial topology. The network topology can be modified by changing
status of the line switches (opened/closed). The goal of the proposed control strategy is to
find the optimal radial network topology and the optimal power references for the controllable
generators and energy storage units that will minimize cumulative active power losses while
satisfying operating constraints. By utilizing recent results on convex relaxation of the power
flow constraints, the proposed dynamic reconfiguration algorithm can be formulated as a mixed-
integer second order cone program. Furthermore, if polyhedral approximations of second order
cones are used then the underlying optimization problem can be solved as a mixed-integer linear
program. Performance of the algorithm is illustrated on a small simulation case study based on
actual meteorological and consumption data.
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1. INTRODUCTION

Reliable and efficient functioning of electrical power dis-
tribution systems, which comprise numerous interacting
components (e.g. distributed energy sources, storage units,
distribution network, and large and small consumers),
is becoming increasingly important due to the growing
penetration of distributed intermittent energy sources in
power distribution systems. The dynamic interaction of
locally managed components gives rise to complex dy-
namic behavior of the overall system and can lead to large-
scale disruptions, i.e. black-outs in the electric grid. Hence,
to achieve optimal operation of the power system, the
operator (controller) must take this dynamic behavior into
account. Moreover, power distribution systems are built
as interconnected meshed networks but they, as a rule,
operate in a radial topology. Since the topology of the
network can be modified by changing the opened/closed
status of line switches, the optimal management of the
overall system has to find the optimal configuration of the
network.

The Optimal Power Flow (OPF) problem has been rec-
ognized as the fundamental problem in power system op-
eration since the first formulation by Carpentier (1962).
Since then the OPF has been studied extensively and
a great number of methodologies and algorithms have
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been developed to solve the problem (Dommel and Tinney
(1968); Frank et al. (2012)).

Distribution System Reconfiguration (DSR) problem ex-
tends the OPF problem with binary variables modeling
the switching actions in the network and aims to find the
network topology that will ensure the minimal power losses
in the network. The DSR problem can generally be mod-
eled as a Mixed-Integer Nonlinear Program (MINLP). His-
torically, most of the methods for network reconfiguration
relied on heuristics (Merlin and Back (1975)) and artificial
intelligence techniques (Ramos et al. (2005); Carreno et al.
(2008)). Although these algorithms are generally easy to
implement and sometimes very fast on practical networks,
global solution optimality is not guaranteed and cannot be
formally verified.

Global deterministic optimization methods for solving
both the OPF and the DSR problem have attracted a
great deal of attention recently. This development has
been mostly due to the convex relaxation of the non-
convex network constraints that was first proposed by
Jabr (2006). In the work by Jabr et al. (2012), the DSR
problem is formulated as a Mixed-Integer Second Order
Cone Program (MISOCP). A linear model of the network
where loads are represented as constant current sources
in parallel with constant impedance is proposed in work
by Ahmadi and Marti (2015). The optimization problem
they consider is formulated as a Mixed-Integer Quadratic
Program (MIQP).
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The conventional OPF and DSR problem formulations are
essentially static optimization problems, i.e. a steady-state
operation of the power network is assumed. In order to
take into account the dynamics in the power network, we
propose a closed-loop Nonlinear Model Predictive Control
(NMPC) strategy based on the MISOCP formulation of
the DSR problem by Jabr et al. (2012). The MISOCP
formulation can be reduced to the Mixed-Integer Linear
Programming (MILP) formulation using the polyhedral
approximation of the second order cone introduced by
Ben-Tal and Nemirovski (2001). For simplicity, in this
paper we model only battery storage dynamics, although
any other component with (piecewise) linear dynamics
can be modeled in a similar manner. In work by Gayme
and Topcu (2013), the Semidefinite Programming (SDP)
formulation of the OPF problem has been extended with
storage dynamics, but they do not consider the network re-
configuration and they implement the control action in an
open-loop manner. Jabr (2014) investigated the open-loop
DSR formulation but dynamics of various components was
not taken into account.

We pay special attention to the problem of ensuring the
radiality of the network. Note that the constraints used
by Jabr (2014) are necessary but generally not sufficient
to ensure the radial topology of the network (cf. Lavorato
et al. (2012); Ahmadi and Marti (2015)). For a special case
when the power distribution system can be represented
with a planar graph, we use a formulation of the radiality
constraint based on the idea by Williams (2002).

The rest of this paper is organized as follows. The control
problem considered herein is introduced in Section 2.
In Section 3 a mixed-integer formulation of the control
problem is derived. A closed-loop NMPC algorithm is
described in Section 4. Finally, a simple simulation case
study is used to verify the performance of the proposed
algorithm in Section 5. Concluding remarks are given in
Section 6.

2. PROBLEM SETUP

Consider a power network represented by the graph G =
(V, &), where V := {1,2,...,n} is the set of nodes, and
E CV xV is the set of flow lines (4, j), where 7,5 € V and
i # j. Let N(i) denote a set of all nodes adjacent to node
i, 1.e. N(i) :=={j | (i,7) € £}. Node n is designated as the
root of the network and represents the substation node,
e.g. the node that connects the distribution network to
the rest of the power system. Let V := {1,2,...,n— 1}
denote all nodes except the substation node n. Each
node, except the substation node, may have photovoltaic
(PV) generation, battery storage, and loads connected
to them. It is assumed that all lines are equipped with
switches and can participate in the reconfiguration of the
network topology. In the following, to simplify notation,
we associate with each line (i,7) € £ a unique index
¢ e {1,2,...,m}, where m is the total number of lines.
We define the following variables and parameters of the
system model:

e G C E, the set of nodes with PV generation.
e B CV, the set of nodes with battery storage.
e D CV, the set of nodes with loads.

° PtS and Qts, the active and reactive power of the
substation connected to node n at time instant ¢.

e PP and QP,, the active and reactive power of the load
connected to node i € D at time instant ¢.

e PV and Q7Y, the active and reactive power of the
PV generator connected to node ¢ € G at time instant
t.

° xE’ﬁT, the amount of battery storage connected to

node ¢ € B at time instant ¢.

PEAT, the rate of charge/discharge of battery storage

connected to node ¢ € B at time instant ¢.

e QPAT the reactive power of the battery storage
connected to node i € B at time instant ¢.

e V., the voltage magnitude at node i € V at time
instant t.

e 0,4, voltage angle at node ¢ € V at time instant t.

e 0;;.+, voltage angle difference between nodes i € V and
JEV, (i,j) € &, at time instant ¢, 0,5+ = 0; 1 — 0, ;.

e P and Q;;+, the active and reactive power trans-
ferred from node i € V to the rest of the network
through line (7,5) € £ at time instant ¢.

® 0;j+, the switching status of line (¢,j) € £ at time
instant ¢, i.e. d;5; = 1 means the line is switched on
and ;5 = 0 means the line is switched off. Note that
each d;;; can be also denoted by &g ;.

The circuit model of the power network can be derived
by replacing every transmission line and transformer with
their equivalent II-models (Kundur (2004)). In this circuit
model, for each line (i,j) € &, let z;; € C denote its
impedance (with r;; = R{z;;} and z;; = ${z;}), and

Yij = zzjl its admittance (with g;; = R{y;;} and b;; =
S{yis})-

For every node i € V of the network, the following
constraints on active and reactive power injection (Pi{t and
Q;t, respectively) must be ensured at every time instant

Pl, =P + PEAT — PP =) "6,P0, Vi€V, (la)

JEN(3)
;t = ZPX + E?T — i[,)t = Zéij,tQij,ta vieV, (1b)
JEN(3)

where P;j;; and @Q;;,; are computed as follows:
_ 2
Pije = 9i5Vi —
: 2
Qijt = ViitVje (bij cos Oije — gijsinbij) — big Vi,

VitVit (9ij cos b + bijesinbjz), (2a)
(2b)

Substation located at node n connects the power distribu-
tion network to the rest of the power system. It is assumed
that the substation provides the balance of active and
reactive power in the distribution network:

PTIL,t =P = Z5nj,tpnj,t, (3a)
JEN(n)

L,,t = Qts = Zdnj,thj,ta (3b)
JEN(n)

where P,;; and Q,; are computed as in (2).

The voltage magnitude at node ¢ € V lies within pre-
defined lower and upper bounds V and V, respectively:
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