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1. INTRODUCTION

Model Predictive Control (MPC) is an advanced control method
for constrained multivariable control problems. MPC relies on
an internal dynamic model of the plant and available plant
measurements (or estimates) in order to predict the future
behavior of the plant. The model describes the dynamic and
static interactions between inputs (also known as manipulated
variables or MVs), outputs (controlled variables or CVs), and
disturbance variables (DVs).

In a model-based control approach the accuracy of the model
used has a significant effect on the performance of the con-
troller, and in the case of MPC, inaccurate predictions can lead
to undesirable control performance. The type of model used
also incorporates specific characteristics and capabilities to the
MPC scheme. For instance, the use of step response models is
limited to asymptotically stable and integrating plants, whereas
a state-space or ARX model can also describe unstable sys-
tems. A nonlinear model will introduce different properties (in-
cluding significant advantages and disadvantages) to an MPC
scheme compared to the use of a linear model, which is the
main focus of this paper.

Dynamic Matrix Control (DMC), Cutler and Ramaker (1979),
which is among the first MPC schemes developed in the 1970s,
uses step response models, and the use of step response models
is still common in industrial MPC implementations (Strand and
Sagli, 2003; Maciejowski, 2002; Camacho and Bordons, 2007;
Qin and Badgwell, 2000; Garcia et al., 1989). This is mainly
because step response models are easy to build, understand,
and maintain (Strand and Sagli, 2003; Lee et al., 1994). The
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limitations of step response models are also well covered in
the MPC literature (see for example Lundström et al. (1995);
Lee et al. (1994); Qin and Badgwell (2000); Maciejowski
(2002)). However, many practical applications exist where the
limitations are not considered crucial for control performance.

A known issue of step response models is the large amount
of data usually required in order to produce accurate enough
predictions in MPC. The amount of data tends to be very large
for applications where fast sampling rates are necessary for de-
sired control performance targets (Lundström et al., 1995; Hovd
et al., 1993; Maciejowski, 2002). Due to practical limits on the
amount of step response data that can be used in an application,
truncated models may be considered. Nevertheless, the extent
of truncation is limited. In fact, large truncation errors may not
only lead to poor performance, but also instability (Lundström
et al., 1995). Different techniques have been introduced to cap-
ture the residual neglected when the step response sequence
is truncated (see for example Hovd et al. (1993); Lee et al.
(1994)). However, such techniques tend to incorporate other
types of model representations, leading to ”hybrid” formula-
tions, and may introduce complications that reduce the main
attractiveness of step response models. It is therefore the goal
of this work to enhance the efficiency of prediction models that
rely only on step response data.

In this paper, different formulations of the step response pre-
diction model are examined, and implementation aspects that
are crucial for embedded targets with limited resources are
discussed. The properties of the models are analyzed in a simu-
lation study. It is common practice to use the assumption s(N+
i) ≈ s(N), for i ≥ 1 to extend a sequence of N step response
coefficients in order to (for example) achieve appropriate di-
mensions in a matrix-vector formulation for multiple-input-
multiple-output (MIMO) systems. Nevertheless, it is shown
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in this paper that a more cautious use of s(N + i) ≈ s(N) is
important in order to avoid the violation of the constant un-
known disturbance assumption commonly used in step response
prediction models.

2. STEP RESPONSE PREDICTION MODELS

When a step response model of a single-input single-output
(SISO) system is used for prediction in MPC, an estimate of
the future plant output trajectory, {y(k+ j), j = 1, . . . ,Hp}, can
be obtained based on the knowledge of the past control moves,
{∆u(k− i), i = 1, . . . ,N}, and the measured plant output ym(k).
The prediction horizon is specified by Hp, and N is the number
of step response coefficients, s(i), used in the step response
model:

y(k) =
N−1

∑
i=1

s(i)∆u(k− i)+ s(N)u(k−N) (1)

Model (1) assumes that the step response coefficients are ob-
tained from a process that is initially at steady-state, with all
inputs and outputs at zero. The model (1) is valid only if the
process is asymptotically stable, implying that the coefficients
in s(i) reach constant values after N sampling periods, i.e. s(N+
1)≈ s(N).

2.1 Standard formulation

Based on (1), prediction of the future output trajectory can be
computed using

ỹ(k+ j|k) =
N−1

∑
i= j+1

s(i)∆ũ(k+ j− i)+ s(N)ũ(k+ j−N)

+
j

∑
i=1

s(i)∆u(k+ j− i), (2)

where ∆u(k) = u(k)− u(k− 1). The unknown terms consist of
the present and future input moves ∆u(·), while the known terms
contain the past input ũ(·) and past input moves ∆ũ(·). Model
(2) is referred to as prediction model Variant A.

2.2 Disturbances

Without output feedback, the cumulative effects of unmeasured
disturbances and model errors will lead to inaccurate predic-
tions. A disturbance model v(k+ j|k) is therefore used:

ŷ(k+ j|k) = ỹ(k+ j|k)+ v(k+ j|k), (3)
v(k+ j|k) = v(k|k) = ym(k)− ỹ(k|k−1). (4)

The model (4) is a usual choice known as a bias term used in
correcting ỹ(k + j|k), and it provides integral action in MPC.
Throughout this paper, ·̃ is used on output vectors to indicate
that the predictions are not corrected, and the use of ·̂ implies
that a bias correction is applied. The simple bias term (4)
assumes that an additive (step) disturbance acts on the plant
output, and the disturbance remains constant for j = 1, . . . ,Hp.
If this assumption does not hold in a given situation, the output
prediction will be incorrect, and it may lead to poor control
performance.

If a disturbance variable d can be measured, a disturbance term
that contains the step response model relating the measured
disturbance to each controlled variable can be added to the
prediction model. Since the future changes in disturbance are
not always known at the current time k, a usual assumption is
that ∆d(k+ j) = 0, j ≥ 1.

2.3 Alternative formulations of the standard prediction model

An alternative formulation to (2) is derived in Maciejowski
(2002):

ỹ(k+ j|k) =
N

∑
i= j+1

s(i)∆ũ(k+ j− i)+ s( j)ũ(k−1)

+
j

∑
i=1

s(i)∆u(k+ j− i), (5)

where only the past control input ũ(k − 1) is used, instead of
{ũ(k + j − N), j = 1, . . . ,Hp}, as stated in (2). Model (5) is
referred to as Variant B.

In (3), the known terms of ŷ(k + j|k) define the predicted
unforced response of the plant ŷ f (k+ j|k), also known as the
free response. From (3) and (4),

ŷ(k+ j|k) =
j

∑
i=1

s(i)∆u(k+ j− i)+ ŷ f (k+ j|k), where

ŷ f (k+ j|k) =
N−1

∑
i= j+1

s(i)∆ũ(k+ j− i)+ s(N)ũ(k+ j−N)+

ym(k)−
N−1

∑
i=1

s(i)∆ũ(k− i)− s(N)ũ(k−N), (6)

and ŷ f (k+ j|k) the response at each point along the prediction
horizon, if the future inputs remains the same as ũ(k−1).

Using (6), another formulation, Variant C, is derived in Cama-
cho and Bordons (2007), where the state space realization of
step response models are emphasized. Considering N > Hp, the
free response can be written in a more compact form (Camacho
and Bordons, 2007):

ŷ f (k+ j|k) = ym(k)+
N

∑
i=1

(
s(i+ j)− s(i)

)
∆ũ(k− i), (7)

where s(i + j) − s(i) ≈ 0, for i > N, has been used. The
prediction model can be written in a matrix-vector form by
considering the following definitions:

Ŷ (k+1) = [ŷ(k+1|k) . . . ŷ(k+Hp|k)]T (8a)

Ŷf (k+1) = [ŷ f (k+1|k) . . . ŷ f (k+Hp|k)]T (8b)

∆U(k) = [∆u(k) ∆u(k+1) . . . ∆u(k+Hu −1)]T (8c)
The prediction model variant C will then take the form:

Ŷ (k+1) = Θ̄∆U(k)+ Ŷf (k+1), (9)

where Θ̄ =




s(1) 0 . . .

s(2) s(1)
. . .

...
...

. . .

s(Hp) . . . s(Hp −Hu +1)


 (10)

Since Ŷf (k+ 1) is the response when no future control moves
are applied, it depends on the state of the plant, defined as

X̂(k) = [ym(k) ∆u(k−1) . . . ∆u(k−N +1)]T (11)
=⇒ Ŷf (k+1) = A f X̂(k), (12)

where A f can be extracted from (7) by direct inspection.

A f =




1 s(2)− s(1) s(3)− s(2) . . . s(N)− s(N −1)
1 s(3)− s(1) s(4)− s(2) . . . s(N)− s(N −1)
...

...
...

...
...

1 s(1+Hp)− s(1) s(2+Hp)− s(2) . . . s(N)− s(N −1)


 (13)

The prediction model (9) can therefore be written as
Ŷ (k+1) = Θ̄∆U(k)+A f X̂(k), (14)
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