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Abstract: One way to ensure recursive feasibility, stability and performance of Nonlinear Model
Predictive Control is the combined use of a terminal region and a terminal cost. However, finding
suitable combinations of the terminal cost and terminal region that guarantee closed-loop stability for
nonlinear systems is in general challenging. Most existing methods are either based on the linearized
system dynamics and a linear feedback, or assume that a control Lyapunov function for the system close
to the origin is know. This paper proposes the use of higher order approximations of the optimal feedback
and optimal cost of the infinite horizon problem via Al’brekht’s Method to determine a suitable terminal
region for polynomial systems. To do so, the stability conditions are reformulated in terms of a sum-
of-squares problem which is iteratively used to determine the terminal region. For a nonlinear chemical
reactor example it is shown that the proposed approach leads to a larger terminal region and an improved

performance compared to existing approaches.
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1. INTRODUCTION

Model Predictive Control (MPC) has achieved a significant
success as an advanced control technique especially in its linear
version [Rawlings and Mayne, 2009, Mayne, 2014] and also in
industrial applications [Qin and Badgwell, 2003]. Despite many
results presented in the research community for the nonlinear
case, its practical application is still in its early stages. Besides
the computational cost associated to solving a nonlinear pro-
gramming problem and the difficulty of obtaining an accurate
nonlinear model of the system, one of the main obstacles for
the design of Nonlinear Model Predictive Control (NMPC) is
the design of stabilizing controllers that guarantee stability and
constraint satisfaction. By now various approaches to guarantee
nominal and robust stability of NMPC exist, see e.g. [Rawlings
and Mayne, 2009, Mayne, 2014, Findeisen and Allgower, 2002,
Griine and Pannek, 2011]. One classical approach is the use
additional stabilizing ingredients (a terminal cost and terminal
constraint) that are included in the optimization problem to
achieve a stability guarantee for the closed loop system and
recursive feasibility of the optimization problem, see e. g. [Chen
and Allgower, 1998, Mayne et al., 2000, Griine and Pannek,
2011, Findeisen and Allgower, 2002, Fontes, 2001].

The classical approaches to calculate such ingredients are based
on the linearization of the nonlinear dynamics around an equi-
librium point and on the computation of a linear feedback
control that locally stabilizes the system [Chen and Allgower,
1998, Michalska and Mayne, 1993]. This linear feedback is
used to compute a quadratic terminal cost and the terminal set
is considered to be a sub-level set of this cost. There exist other
methods that modify the terminal penalty term in such a way
that the terminal constraint is not necessary as shown in [Limon
et al., 2006], or in [Griine, 2012]. In the present paper, we focus

on the most used method that employs both a terminal penalty
and a terminal constraint.

Several methods presented in the literature use linear differ-
ential inclusions (LDI) [Chen et al., 2003, Yu et al., 2009]
to approximate the nonlinear system as a linear time-varying
system. This method achieves in general invariant regions of
a larger volume compared to the ones based on linearization
and Lipschitz bounds, e.g. [Chen and Allgéwer, 1998] but
leads typically to conservative results because of the LDI repre-
sentation of the nonlinear system. Further improvements were
presented in [Cannon et al., 2003, Barjas Blanco and De Moor,
2007], where polytopic terminal regions are considered and in
[Ong et al., 2006], where support vector machines are employed
to enlarge the terminal region. However, they share two main
difficulties. All of them (with the exception of the work pre-
sented in Bacic et al. [2002] for bilinear systems) assume a
linear controller of the nonlinear dynamics, based on which the
terminal region is computed. This clearly limits the size of the
obtained terminal region in the nonlinear case. Additionally,
it is usually guaranteed that there exists a sub-level set of the
obtained terminal cost which can be suitable terminal region,
but it is very difficult to compute the sub-level set with the
largest volume, although some iterative schemes such as the
one in [Cannon et al., 2003] exist.

In this paper, we facilitate the design of NMPC controllers
by alleviating the difficulties mentioned above. We make use
of Al’brekht’s method [Al’brekht, 1961, Aguilar and Krener,
2014, Krener, 2014, Hunt and Krener, 2010] to calculate a
higher degree approximation of the optimal infinite horizon
cost and feedback in an efficient manner. We use both the
(approximated) optimal cost and optimal feedback, which are
polynomials of a degree of choice, to calculate a terminal region
that satisfies the necessary conditions of stability for the NMPC
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algorithm. We compute in an efficient manner a possible ter-
minal region for polynomial systems by reducing the problem
to a sum-of-squares problem using Putinar’s positivstellensatz
[Putinar, 1993].

As opposed to most of the literature, we do not use a linear
feedback control, but a higher order approximation of it, as well
as a high oder approximation of the terminal cost. This, together
with the efficient calculation of the terminal set, provides a
design method that can achieve a larger terminal region and
also increases its performance because the terminal penalty is a
better approximation of the infinite horizon cost. These results
are illustrated using a nonlinear chemical reactor example.

The remainder of the paper is structured as follows. We describe
the problem setup in Section 2, and described the Al’brekht’s
method in Section 3. Section 4 shows the proposed method to
compute the terminal set for polynomial systems. The results
for a nonlinear chemical reactor are included in Section 5 and
Section 6 concludes the paper.

2. PROBLEM SETUP

We consider continuous-time time-invariant nonlinear systems
described by:

@(t) = f(z(t), u(t)), t=0, x(0)= =0, ()
where x € R™ denotes the vector of states, u € R™ is the vector
of control inputs and f : R™ x R™ — R" are the dynamics
of the nonlinear system. The control task is to locally stabilize
an equilibrium point, which for simplicity and without loss of
generality is assumed to be at the origin (f(0,0) = 0).

As it is usually done in MPC, we consider a sampled feedback
law, which is piecewise constant between sampling times ¢;:

u(t) = w(z(t), V€ [t tir] 2)

At each sampling instant ¢; the following optimal control prob-
lem is solved:

i+ T
/ L(z(7),u(r))dr + E(z(t; + Tp)) (3a)

mini(n)lize

subjectto  z(t) = f(z(t),u(t)), x(t;) =z, (3b)
2(ti + T,) € Xy, (3¢)
z(t) e X,u(t) € U, (3d)

fort € [t;,t; + 1),

where T, is the prediction horizon. L(-) and E/(-) are the stage
cost and terminal cost, respectively. The state at the final time in
the prediction is constrained to lie in a terminal set X and x;,
denotes the current measurement of the state. X and U denote
state and input constraints and are assumed to be compact sets
that contain the origin. We assume throughout the paper that the
dynamics f, the stage cost L and the terminal cost E are C'*°.

After solving (3), the first control input ug = wu(t),Vt €
[ti, ti4+1] is applied until the next sampling time in a receding
horizon fashion. The resulting closed-loop feedback policy is
denoted as KMFC,

It is well known that the direct application of the finite receding
horizon control obtained from the solution of (3) is not guaran-
teed to result in a stable closed-loop (see e. g. [Bitmead et al.,
1990]). One of the most common strategies to guarantee closed-
loop stability and recursive feasibility of an NMPC controller is

to design the stage cost L, the terminal cost F and the terminal
region so that they fulfill certain assumptions. Different designs
are possible (see [Mayne et al., 2000, Griine and Pannek, 2011,
Findeisen and Allgower, 2002] and we use in this paper the
most common criteria, which is stated in the following assump-
tion.

Assumption 1. (Assumption on the terminal ingredients). The

terminal ingredients are designed such that:

i) The stage cost L(z,u) is positive semidefinite with re-
spect to x, positive definite with respect to u and L(0,0) =
0.
ii) The terminal cost E(x) is positive semidefinite
iii) There exist a control policy (z) inside a control invariant
terminal region Xy C X such that:

0F

ox

The following well known theorem (see e.g. Fontes [2001],
Griine and Pannek [2011], Findeisen et al. [2003]) states the
stability of the continous-time NMPC algorithm.

(z,k(z)) < —L(z, k(x)), Vo € X;

Theorem 1. Under Assumption 1, the system (1) is closed-loop
asymptotically stable under the receding control law xMP€,

Calculating the terminal ingredients that satisfy Assumption 1
is reasonably easy for the linear case (see e.g. [Rawlings and
Mayne, 2009]). However, this calculation constitutes one of
the main difficulties for the design of NMPC controllers with
guaranteed stability and recursive feasibility.

Most of the methods are based on the linearization of the system
around an equilibrium point (the origin in this case), obtaining
the linearized dynamics & = FZ+G. Assuming stabilizability
of (F, @), a terminal feedback law can be obtained solving the
LQR problem using typically a quadratic stage cost of the form
L(z,u) = 27 Qx + u” Ru. The obtained feedback law is:

u(t) = —Ka(t), with K = R7'GTP “4)
and P is obtained as:
FTP+PF-KTRK+Q=0 3)

Then, as proved in [Chen and Allgéwer, 1998] using the closed
loop dynamics Fx = F + GK the following Lyapunov
equation has a unique positive-definite and symmetric solution
P*:

Fx 4 p)TP* 4+ P*(Fk + pI) = —Q*, (6)
with Q* = @Q + K'RK and p is a non-negative constant
that satisfies p < —Amax(Fk ). The terminal cost is chosen
as £ = 27 P*x and as shown by Chen and Allgéwer [1998]
there exist a sub-level set of the terminal cost that can be chosen
as a terminal set that satisfies the required Assumption 1. The
terminal set X is defined as:

Xi(a) = {z € X|2TP*z < o}. )

This methods has several drawbacks. Because of the first or-
der approximation performed for the nonlinear dynamics, for
the obtained terminal control and the quadratic approximation
of the terminal cost, they can be significantly different from
the optimal ones for the nonlinear system. This can lead to
a decreased performance, and also to a reduced size of the
terminal region. In this paper, we employ a method to achieve
an approximation of the optimal feedback and optimal cost of a
higher degree, cf. Section 3.
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