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Abstract: Motivated by the recent progress in centralized Model Predictive Control (MPC)
design using a linear program (LP) and distributed MPC with quadratic program (QP)
formulations, this paper discusses the design of LP-based cooperative distributed MPC for
large scale linear systems with coupled dynamics and decoupled input constraints. As such,
we examine the applicability of the Divide and Conquer approach to QP-based cooperative
distributed MPC, recently proposed by the authors, to the LP-based case. It is shown that
within the Divide and Conquer framework, an upbound of the original LP-based cooperative cost
function (instead of itself), can be optimized for computing local inputs, resulting in suboptimal
policies. However, advantages of doing so include the independency of the computation of local
inputs and a large amount of communication burden reduction, as guaranteed by theoretical
analysis and illustrated through numerical simulation. We also present closed-loop stability
analysis and point out some questions worth further investigation.

© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Predictive Control, Distributed Control, Constrained Control, Linear Programming

1. INTRODUCTION

MPC has received much consideration from both academia
and industry (Mayne et al. (2000), Qin and Badgwell
(2003)), due to its ability to handle multi-dimensional con-
strained systems with stability and robustness guarantee
Goodwin et al. (2005), Borrelli et al. (2014), Rawlings
and Mayne (2009), Goodwin et al. (2014), Lee (2014),
and Mayne (2014). One tuning knob in MPC design is to
formulate the cost either as a quadratic or linear criterion
so that the optimization problem becomes a QP or LP,
respectively. Compared to its QP formulation, MPC via
LP is less studied, due to the elegant connection of the
former to linear quadratic regulation theory. Nonetheless,
design of optimal control and MPC via LP has received
renewed attention recently (see, Rao and Rawlings (2000),
Vandenberghe et al. (2002), Bemporad et al. (2002)), due
to the development of more effective multiparametric LP
methods Jones et al. (2007). Recent works have also shown
the benefits of combining QP and LP in MPC to achieve
sparsity Gallieri and Maciejowski (2012), Nagahara et al.
(2014). Whilst these works provide great insights into LP-
based MPC, the results are centralized in nature and may
not be applicable to large scale systems with coupling
dynamics, physical, and networked constraints.

In fact, there has been a recent rigorous interest to inves-
tigate distributed MPC paradigms Rawlings and Stewart
(2008), Muller et al. (2012), Giselsson et al. (2013), Conte
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et al. (2013), Stewart et al. (2010). Such frameworks are
desirable, since in centralized solutions, all subsystems rely
on a central decision maker to coordinate and maintain
plantwide actions, leading to organizational inefficiency,
computational, and implementation issues. Existing dis-
tributed MPC methods can be classified as decentralized
or distributed, cooperative or noncooperative, sequential
or parallel, etc, Scattolini (2009), Christofides et al. (2013)
and Maestre and Negenbaum (2014). An important dis-
covery of the recent distributed MPC literature, among
others, is that cooperative MPC emerges as the most at-
tractive option among distributed MPC frameworks since
it can guarantee closed-loop stability of a wide class of
plantwide models regardless of the strength of the cou-
pling dynamics, with a certain amount of communication
burden increment Stewart et al. (2010). For an insightful
discussion on different distributed MPC frameworks, one
can refer to Chapter 6 of Rawlings and Mayne (2009).

We remark that most of the existing cooperative distribut-
ed MPC frameworks are QP-based and suboptimal, since
the inherent characteristic of the cooperative question
renders the computation of a single local input dependent
on plantwide state information and the value of other
local inputs. Very recently, in Kong et al. (2015), for the
same problem setup with that of Stewart et al. (2010)
(and Chapter 6 of Rawlings and Mayne (2009)), we have
proposed a Divide and Conquer approach to cooperative
distributed MPC. We have shown that the proposed ap-
proach with its QP formulation allows one to compute
the local inputs independently with a moderate amount of
communication burden. Besides, it works for any length of
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the prediction horizon and can be implemented in various
ways to obtain the distributed local inputs, including ex-
plicit solutions, online parallel solutions without or with
iteration, with closed-loop stability guaranteed a priori.

Motivated by the above progress, this paper discusses the
design of LP-based cooperative distributed MPC for large
scale linear systems with coupled dynamics and decoupled
input constraints. Especially, we show that the Divide
and Conquer approach to LP-based cooperative distribut-
ed MPC could enjoy those desirable features of its QP
counterpart Kong et al. (2015). Although LP-based MPC
might be solved more efficiently for large scale systems
than its QP counterpart, we remark that our motivation
to discuss the design of LP-based cooperative distribut-
ed MPC includes both architectural computation issues
and communication considerations, among others. On the
computation side, we believe that the development of LP-
based distributed MPC frameworks can not only enrich
the growing distributed MPC literature but also facilitate
the applicability of existing LP-based centralized MPC
results to large scale systems with coupling dynamics. On
the communication side, for LP-based distributed MPC,
it is generally true that certain information needs to be
transmitted over uncertain networks, similarly with QP-
based distributed MPC. However, there seems to be a
sparse literature on LP-based control system design with
networked induced effects, in contrast to the vast literature
of QP-based design of optimal and predictive control of
networked control systems Yang et al. (2014), Kong et al.
(2014). This clearly leads to some less-studied questions
worth consideration in the context of LP-based distributed
MPC, e.g., robustness issues with networked effects. Thus,
we remark that this paper shall not be considered as a
minor generalization of Kong et al. (2015). It is also our
hope that this work may raise more interest to investi-
gate the design and real time implementation of LP-based
distributed MPC Vichik and Borrelli (2014).

Notation: AT stands for the transpose of matrix A and
R"™ stands for n-dimensional Euclidean space. M > 0
(> 0) means that M is real symmetric and positive
definite (semi-definite). I stands for identity matrices of
appropriate dimensions. Matrices with dimensions not
being explicitly stated are assumed to be compatible for
algebraic operations. .#;.; stands for the set of positive
integers {1,---,s}. diag[X,Y] denotes a block diagonal
matrix with X, Y as its diagonal block entries.

2. PROBLEM FORMULATION

To illustrate, we adopt the system setup of Stewart et
al. (2010). For simplicity, here we only consider the state
feedback case with two subsystems.

2.1 About the models and the cost function with 1/co norm

We assume that for (i,§) € H1.0 X H.9, each subsystem i
is a collection of the following linear discrete-time models

vl = Aijui; + Biju, (1)
where A;; € R™i*™i B;; € R™3*™i are constant
matrices; w;;,u; are the state vector and input vector,
respectively, with wu; denoting the effects of input of
subsystem j on the states of subsystem i. By collecting

the states of subsystem 1 from (1), we obtain z] =
- - . T
A1z + Briug + Bisus, with x1 = [x’lI‘l 1"11;] e R™,

Ay = diag[A11, App) € R*™ By = [ B} O]T,Elz =
[0 BITZ]T, where
Byj e R™X™i | ny = nay + naa. (2)

The model of subsystem 2 can be obtained similarly. The
plantwide model then becomes

" = Az + Byuy + Baua, (3)

where z = [xlf xE]T A = diag[Ay,As], B =

T T
|:§’11‘1 E;} , By = [Esz E;F?} . For discussions on the
relationship between the structures of the subsystems and
the centralized model, one can refer to Stewart et al.
(2010). It can be seen that both local inputs u; and wug
have impact on the two subsystems. Denote u; and us
the local input sequences for the two subsystems along the
prediction horizon, respectively. In LP-based cooperative
distributed MPC, for each subsystem, a cost function
based on a mixed 1/00 norm, namely, 1-norm with respect
to time and oo-norm with respect to space is defined
Bemporad et al. (2002). Each local input is required to
minimize a global objective comprised of individual cost
functions of the subsystems with relative weightings. To
illustrate, for subsystem 1, we define the following cost

function
N-1

Vi = > [1Quar (k)| o+l Raua (k)| )+ | Pray (V) | o (4)
k=0

where Q1 € R™*™ and R; € R™*™ are nonsingular,
P € R™*™ hag full-column rank. For subsystem 2, we
define a cost function V5 in the same form of V;. The
plantwide objective function is defined to be

YV =p1Vi+p2Va (5)
where both p; and po are positive real numbers represent-
ing the relative weights of Vi and V5, respectively. Note
that the choice of p; and ps is problem dependent and can
be considered as a design freedom for the user.

Remark 1. In cooperative distributed MPC, each local
system computes its local input sequence by optimizing
the plantwide objective function (5) (thereby accounting
for the dynamics of the whole plant) and applies only
the first move. Note that both V; and V5 are implicit
functions of both u; and uy. Thus, the computation of
the two local input sequences depends on each other. Also,
as in centralized MPC, the choice of N and Q;, R;, P;
have influences on the solution to the question Kong et
al. (2012), Kong et al. (2013).

2.2 About the constraints and assumptions

We assume that the local inputs are decoupled and satisfy
u1(k) € Uy, ua(k) € Ug, for k € Hy.ny—1, where Uy and U,
are compact and convex sets that include the origin in their
interior. For the case of decoupled input constraints, the
contribution of either local input on the cooperative cost
function ¥ cannot be affected by the other, and therefore
can be neglected in both local computations. However,
as remarked earlier, the computation of the local input
sequence is dependent on each other. Thus, for i € ..o,
the local optimization problems of computing u; will be
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