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Abstract: Two recent predictive control approaches for constrained systems subject to
uncertainty are reviewed. The first one, named scenario MPC, is best suited for stochastic
systems where a certain share of constraint violations is tolerated and rewarded. The approach
is able to control precisely the share of violations that occur during closed loop operation, under
quite general assumptions on the involved stochastic variables. The second technique, named
adaptive MPC, is cast in a different framework, where the aim is to enforce robustly the system
constraints and a stochastic characterization of the uncertainty is not required. The algorithm
embeds a real-time set membership identification strategy that yields a refined set of unfalsified
models at each time step, hence reducing the size of the model uncertainty and improving the
closed loop performance over time. After recalling the main results pertaining to each approach,
their applicability, strengths and weaknesses are discussed, as well as open issues that can be
subject of future research.
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1. INTRODUCTION

Among the research topics concerned with Model Predic-
tive Control, the study of its robustness properties and
the development of approaches that can cope with un-
certainty and disturbances have been active subjects for
more than two decades, during which theoretical results
and design techniques have been delivered for both linear
and nonlinear systems, in presence of different descriptions
of the uncertainty. A conspicuous number of contributions
considered non-stochastic models for the uncertainty af-
fecting the system, where the uncertain parameters and/or
external disturbances are assumed to be of the “unknown
but bounded” (ubb) type, typically confined in polytopic
sets, see for example the works of Polak and Yang (1993);
Michalska and Mayne (1993); Kothare et al. (1996); Lee
and Kouvaritakis (2000); Primbs and Nevistic (2000);
Diehl and Bjornberg (2004); Grimm et al. (2004); Langson
et al. (2004); Mayne et al. (2005); Bravo et al. (2006);
Goulart et al. (2006); Pin et al. (2009). In a non-stochastic
framework, the aim is usually to absolve a reference track-
ing task while enforcing constraints and retaining closed
loop stability for all possible realizations of the uncertainty
within the assumed bounds. This is often referred to as
worst-case approach, since the control input is determined
by those values of the uncertain parameters or distur-
bances which determine the worst situation possible for
the system in its current state.

In relatively more recent times, research efforts have been
increasingly focusing also on stochastic uncertainty mod-
els, see e.g. the work of Li et al. (2002); Cannon et al.

(2011); Chatterjee et al. (2011); Cinquemani et al. (2011);
Schwarm and Nikolaou (1999); de la Pena et al. (2005);
Cannon et al. (2009); Primbs and Sung (2012); Arellano-
Garcia and Wozny (2009); Bemporad and Cairano (2011);

Bernardini and Bemporad (2012); Cairano et al. (2014).
A stochastic characterization of the uncertainty naturally
leads to the concept of probability of constraint violation,
hence opening a framework where violating constraints
is tolerated up to a certain desired probability. Such a
concept is of little interest if the optimization of the perfor-
mance is by itself driving the system’s trajectory inside the
constraints. A more intriguing framework for stochastic
uncertainty models is one where a better performance is
achieved when constraints are violated, i.e. when enforcing
the constraints and optimizing performance are “oppo-
site” tasks, so that it is of interest to attain exactly the
prescribed probability of constraint violations, which re-
flects a tradeoff between cost optimization and safe system
operation. This framework is interestingly connected to
economic MPC problems (see e.g. the special issue edited
by Christofides and El-Farra (2014)), when the economic
cost criterion drives the state trajectory on the constraints.

Notwithstanding the relatively large number of contri-
butions in the literature, research on MPC approaches
that take into account either stochastic or non-stochastic
uncertainty models is still very active, tackling more and
more complex problems or aiming at devising more ef-
ficient or practical implementations. In recent years, we
developed two new techniques to deal with stochastic and
non-stochastic uncertainty, respectively.

The first one, named scenario MPC (Schildbach et al.
(2014)), allows the control designer to control precisely
the share of violations that occur during closed loop op-
eration. The approach can be applied to any uncertain
linear system, i.e. any probability distribution on any
support set can be treated, as well as any kind of func-
tional dependence of the system matrices or the exogenous
disturbances from the uncertain variables. Moreover, the
optimization program to be solved at each time step is
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convex and the number of constraints scales linearly with
the number of control inputs, hence it is independent of
the prediction horizon and from the number of uncer-
tain variables. The approach builds up on the theory of
scenario optimization and its application to multi-stage
uncertain decision problems and MPC, see the works by
Campi and Garatti (2008, 2011); Calafiore and Fagiano
(2013a,b); Matusko and Borrelli (2012); Prandini et al.
(2012); Schildbach et al. (2012); Vayanos et al. (2012);
Schildbach et al. (2013).

The second technique, named adaptive MPC' (Tanaskovic
et al. (2014a)), is cast in a non-stochastic framework
where the only prior knowledge on the system is given
by some (eventually very loose) bounds on its impulse
response coefficients and a bound on the additive output
disturbances. The approach combines a real-time set mem-
bership identification algorithm and a robust predictive
control one: the former is used to refine, at each time step,
the set of models that are consistent with the available
prior information and the collected input-output mea-
surements, while the latter is used to compute a control
input that enforces robustly the system constraints and
ensures recursive feasibility. The use of model adaptation
in MPC has been proposed several times in the litera-
ture, see e.g. the works by Kim et al. (2008); Kim and
Sugie (2008); Aswani et al. (2013); Adetola et al. (2011);

Veres and Norton (1993); however among these previous
contributions, those that lead to a convex optimization
problem are cast in a different framework with respect to
the one we propose, and none of them consider at the same
time the presence of non-zero measurement noise on the
feedback variables, hard output constraints, and multiple-
input, multiple-output (MIMO) plants.

In this paper, we provide an overview of these two ap-
proaches and of the main related theoretical results, and,
in light of the experience we accumulated on their use, we
discuss their applicability, strengths and weaknesses, as
well as open issues that can be subject of future research.

2. SCENARIO MODEL PREDICTIVE CONTROL
2.1 Problem settings

We consider a discrete-time system model with a linear
stochastic transition map
x(t+1) = A(6(t))x(t) + B(0(t))u(t) + w(d(t)), z(0) = zZ,
(1)
for some fixed initial condition Z € R™. The matrices
A(6(t)) € R™*™= and B(4(t)) € R™*™ as well as the
additive disturbance w(d(t)) € R"= are random, as they
are known functions of a primal uncertainty ¢(¢). For no-
tational simplicity, d(t) comprises all uncertain influences
on the system at time t € N

Assumption 1. (a) {6(0),d(1),...}, are independent and
identically distributed (i.i.d.) random variables on a prob-
ability space (A,P); (b) i.i.d. samples of §(t) can be
obtained, either empirically or by a random number gen-
erator.

The support set A of §(¢) and the probability measure P
on A are entirely generic. In fact, A and P do not need to
be known explicitly. The exact number of samples which
we require at point (b) of the Assumption will become
concrete in the main results recalled in the next section.

The system (1) can be controlled by inputs {u(0), u(1), ...},
belonging to a set of feasible inputs, U C R™«. In particu-
lar, u(t) should be determined by a static feedback law

P R T with u(t) = (x(t)) ,
based only on the current state of the system.

The cost function is given by the time-average of stage
costs £ : R™ x R™ — Ry,

1 T-1
7 2 (), u() - (2)
t=0

The stage cost ¢ is chosen by the designer according
to the control objective (e.g. consumed energy, tracking
error, etc.); typical choices are to consider the behavior
of a nominal model (i.e. with some fixed value of the
system matrices and of the exogenous disturbance) or the
expected behavior of the uncertain system. Value-at-risk
formulations can be also treated, see Schildbach et al.
(2014) for the full details. The time horizon T is considered
to be very large and generally not precisely known, as it
represents the total period of time during which the control
system operates.

The minimization of the cost is subject to keeping the
state inside a set X for a given fraction of all time steps.
More precisely, we denote with M (¢) := 1xc(x(t + 1)) the
random variable indicating that z(t + 1) ¢ X. Here 1xc :
R™ — {0,1} is the indicator function on the complement

XC of X. The goal is to limit, in closed loop operation,
the expected time-average of constraint violations below a
given violation level £ € (0,1):

T-1
E[;;M(t)} <e. (3)

We assume that the following conditions hold for the
described control problem:

Assumption 2. (a) The state of the system can be mea-
sured at each time step ¢. (b) The set of feasible inputs U
is bounded and convex. (c) The state constraint set X is
convex. (d) The stage cost £(-,-) is a convex function.

Assumption 2(b) holds for most practical applications,
moreover very large artificial bounds can always be in-
troduced for input channels without natural bounds. Un-
certain state constraint sets, i.e. X(d), can be straightfor-
wardly included as long as for any fixed value of § the set
X(d) 1s convex.

Combining what we introduced so far, the optimal control
problem (OCP) can be stated as follows:

=
Iiil(i.l)l T Zﬁ(x(t),u(t)) , (4a)
st 2t +1) = A(6(1))x(t) + B(O(1))u(t) + w(5(t)), ,
2(0) =%, Vt=0,..T—1, (4b)
=
E[T Z Ixc(z(t)] <e , (4c)
t=0
u(t) =vY(x(t) vt=0,.,T-1. (4d)

Since the initial state z is given, only the state feedback
law )(-) is a free variable in (4).

The OCP is generally intractable, as it involves an infinite-
dimensional decision variable () and a large number of
constraints (growing with 7"). A possible way to solve the
OCP in an approximate way is to rely on an MPC strategy
with a shorter horizon N < T'. In particular, a Stochastic
MPC (SMPC) approach often considered in the literature
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